Zeinab Rezaei, Amir Soleimani Dinani, Hamid Moghimi
{"title":"Cutting-edge developments in plastic biodegradation and upcycling via engineering approaches","authors":"Zeinab Rezaei, Amir Soleimani Dinani, Hamid Moghimi","doi":"10.1016/j.mec.2024.e00256","DOIUrl":"10.1016/j.mec.2024.e00256","url":null,"abstract":"<div><div>The increasing use of plastics has resulted in the production of high quantities of plastic waste that pose a serious risk to the environment. The upcycling of plastics into value-added products offers a potential solution for resolving the plastics environmental crisis. Recently, various microorganisms and their enzymes have been identified for their ability to degrade plastics effectively. Furthermore, many investigations have revealed the application of plastic monomers as carbon sources for bio-upcycling to generate valuable materials such as biosurfactants, bioplastics, and biochemicals. With the advancement in the fields of synthetic biology and metabolic engineering, the construction of high-performance microbes and enzymes for plastic removal and bio-upcycling can be achieved. Plastic valorization can be optimized by improving uptake and conversion efficiency, engineering transporters and enzymes, metabolic pathway reconstruction, and also using a chemo-biological hybrid approach. This review focuses on engineering approaches for enhancing plastic removal and the methods of depolymerization and upcycling processes of various microplastics. Additionally, the major challenges and future perspectives for facilitating the development of a sustainable circular plastic economy are highlighted.</div></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":"19 ","pages":"Article e00256"},"PeriodicalIF":3.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142759625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"From plastic waste to bioprocesses: Using ethylene glycol from polyethylene terephthalate biodegradation to fuel <i>Escherichia coli</i> metabolism and produce value-added compounds.","authors":"Alexandra Balola, Sofia Ferreira, Isabel Rocha","doi":"10.1016/j.mec.2024.e00254","DOIUrl":"10.1016/j.mec.2024.e00254","url":null,"abstract":"<p><p>Polyethylene Terephthalate (PET) is a petroleum-based plastic polymer that, by design, can last decades, if not hundreds of years, when released into the environment through plastic waste leakage. In the pursuit of sustainable solutions to plastic waste recycling and repurposing, the enzymatic depolymerization of PET has emerged as a promising green alternative. However, the metabolic potential of the resulting PET breakdown molecules, such as the two-carbon (C2) molecule ethylene glycol (EG), remains largely untapped. Here, we review and discuss the current state of research regarding existing natural and synthetic microbial pathways that enable the assimilation of EG as a carbon and energy source for <i>Escherichia coli</i>. Leveraging the metabolic versatility of <i>E. coli</i>, we explore the viability of this widely used industrial strain in harnessing EG as feedstock for the synthesis of target value-added compounds <i>via</i> metabolic and protein engineering strategies. Consequently, we assess the potential of EG as a versatile alternative to conventional carbon sources like glucose, facilitating the closure of the loop between the highly available PET waste and the production of valuable biochemicals. This review explores the interplay between PET biodegradation and EG metabolism, as well as the key challenges and opportunities, while offering perspectives and suggestions for propelling advancements in microbial EG assimilation for circular economy applications.</p>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":"19 ","pages":"e00254"},"PeriodicalIF":3.7,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11667706/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142886049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Genetically encoded biosensors for the circular plastics bioeconomy.","authors":"Micaela Chacón, Neil Dixon","doi":"10.1016/j.mec.2024.e00255","DOIUrl":"10.1016/j.mec.2024.e00255","url":null,"abstract":"<p><p>Current plastic production and consumption routes are unsustainable due to impact upon climate change and pollution, and therefore reform across the entire value chain is required. Biotechnology offers solutions for production from renewable feedstocks, and to aid end of life recycling/upcycling of plastics. Biology sequence/design space is complex requiring high-throughput analytical methods to facilitate the iterative optimisation, design-build, test-learn (DBTL), cycle of Synthetic Biology. Furthermore, genetic regulatory tools can enable harmonisation between biotechnological demands and the physiological constraints of the selected production host. Genetically encoded biosensors offer a solution for both requirements to facilitate the circular plastic bioeconomy. In this review we present a summary of biosensors developed to date reported to be responsive to plastic precursors/monomers. In addition, we provide a summary of the demonstrated and prospective applications of these biosensors for the construction and deconstruction of plastics. Collectively, this review provides a valuable resource of biosensor tools and enabled applications to support the development of the circular plastics bioeconomy.</p>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":"19 ","pages":"e00255"},"PeriodicalIF":3.7,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11683335/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142907271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Luhui Zhang , Xinpei Sun , Jianwen Ye , QianQian Yuan , Xin Zhang , Fei Sun , Yongpan An , Yutong Chen , Yuehui Qian , Daqian Yang , Qian Wang , Miaomiao Gao , Tao Chen , Hongwu Ma , Guoqiang Chen , Zhengwei Xie
{"title":"Reconstruction and analyses of genome-scale halomonas metabolic network yield a highly efficient PHA production","authors":"Luhui Zhang , Xinpei Sun , Jianwen Ye , QianQian Yuan , Xin Zhang , Fei Sun , Yongpan An , Yutong Chen , Yuehui Qian , Daqian Yang , Qian Wang , Miaomiao Gao , Tao Chen , Hongwu Ma , Guoqiang Chen , Zhengwei Xie","doi":"10.1016/j.mec.2024.e00251","DOIUrl":"10.1016/j.mec.2024.e00251","url":null,"abstract":"<div><div>In pursuit of reliable and efficient industrial microbes, this study integrates cutting-edge systems biology tools with <em>Halomonas bluephagenesis</em> TD01, a robust halophilic bacterium. We generated the complete and annotated circular genome sequence for this model organism, constructed and meticulously curated a genome-scale metabolic network, achieving striking 86.32% agreement with Biolog Phenotype Microarray data and visualize the network via an interactive Electron/Thrift server architecture. We then analyzed the genome-scale network using vertex sampling analysis (VSA) and found that productions of biomass, polyhydroxyalkanoates (PHA), citrate, acetate, and pyruvate are mutually competing. Recognizing the dynamic nature of <em>H. bluephagenesis</em> TD01, we further developed and implemented the hyper-cube-shrink-analysis (HCSA) framework to predict effects of nutrient availabilities and metabolic reactions in the model on biomass and PHA accumulation. We then, based on the analysis results, proposed and validate multi-step feeding strategies tailored to different fermentation stages. This integrated approach yielded remarkable results, with fermentation culminating in a cell dry weight of 100.4 g/L and 70% PHA content, surpassing previous benchmarks. Our findings exemplify the powerful potential of system-level tools in the design and optimization of industrial microorganisms, paving the way for more efficient and sustainable bio-based processes.</div></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":"19 ","pages":"Article e00251"},"PeriodicalIF":3.7,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142707018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Philipp Ernst , Felicia Zlati , Larissa Kever , Astrid Wirtz , Rainer Goldbaum , Jörg Pietruszka , Benedikt Wynands , Julia Frunzke , Nick Wierckx
{"title":"Selective production of the itaconic acid-derived compounds 2-hydroxyparaconic and itatartaric acid","authors":"Philipp Ernst , Felicia Zlati , Larissa Kever , Astrid Wirtz , Rainer Goldbaum , Jörg Pietruszka , Benedikt Wynands , Julia Frunzke , Nick Wierckx","doi":"10.1016/j.mec.2024.e00252","DOIUrl":"10.1016/j.mec.2024.e00252","url":null,"abstract":"<div><div>There is a strong interest in itaconic acid in the medical and pharmaceutical sectors, both as an anti-bacterial compound and as an immunoregulator in mammalian macrophages. Fungal hosts also produce itaconic acid, and in addition they can produce two derivatives 2-hydroxyparaconic and itatartaric acid. Not much is known about these two derivatives, while their structural analogy to itaconate could open up several applications. In this study, we report the production of these two itaconate-derived compounds. By overexpressing the itaconate P450 monooxygenase Cyp3 in a previously engineered itaconate-overproducing <em>Ustilago cynodontis</em> strain, itaconate was converted to its lactone 2-hydroxyparaconate. The second product itatartarate is most likely the result of the subsequent lactone hydrolysis. A major challenge in the production of 2-hydroxyparaconate and itatartarate is their co-production with itaconate, leading to difficulties in their purification. Achieving high derivatives specificity was therefore the paramount objective. Different strategies were evaluated including process parameters such as substrate and pH, as well as strain engineering focusing on Cyp3 expression and product export. 2-hydroxyparaconate and itatartarate were successfully produced from glucose and glycerol, with the latter resulting in a higher derivatives specificity due to an overall slower metabolism on this non-preferred carbon source. The derivatives specificity could be further increased by metabolic engineering approaches including the exchange of the native itaconate transporter Itp1 with the <em>Aspergillus terreus</em> itaconate transporter MfsA. Both 2-hydroxyparaconate and itatartarate were recovered from fermentation supernatants following a pre-existing protocol. 2-hydroxyparaconate was recovered first through a process of evaporation, lactonization, and extraction with ethyl acetate. Subsequently, itatartarate could be obtained in the form of its sodium salt by saponification of the purified 2-hydroxyparaconate. Finally, several analytical methods were used to characterize the resulting products and their structures were confirmed by nuclear magnetic resonance spectroscopy. This work provides a promising foundation for obtaining 2-hydroxyparaconate and itatartarate in high purity and quantity. This will allow to unravel the full spectrum of potential applications of these novel compounds.</div></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":"19 ","pages":"Article e00252"},"PeriodicalIF":3.7,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142707039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Guadalupe Alvarez Gonzalez, Micaela Chacón, Thomas Butterfield, Neil Dixon
{"title":"Tuning the performance of a TphR-based terephthalate biosensor with a design of experiments approach","authors":"Guadalupe Alvarez Gonzalez, Micaela Chacón, Thomas Butterfield, Neil Dixon","doi":"10.1016/j.mec.2024.e00250","DOIUrl":"10.1016/j.mec.2024.e00250","url":null,"abstract":"<div><div>Transcription factor-based biosensors are genetic tools that aim to predictability link the presence of a specific input stimuli to a tailored gene expression output. The performance characteristics of a biosensor fundamentally determines its potential applications. However, current methods to engineer and optimise tailored biosensor responses are highly nonintuitive, and struggle to investigate multidimensional sequence/design space efficiently. In this study we employ a design of experiments (DoE) approach to build a framework for efficiently engineering activator-based biosensors with tailored performances, and we apply the framework for the development of biosensors for the polyethylene terephthalate (PET) plastic degradation monomer terephthalate (TPA). We simultaneously engineer the core promoter and operator regions of the responsive promoter, and by employing a dual refactoring approach, we were able to explore an enhanced biosensor design space and assign their causative performance effects. The approach employed here serves as a foundational framework for engineering transcriptional biosensors and enabled development of tailored biosensors with enhanced dynamic range and diverse signal output, sensitivity, and steepness. We further demonstrate its applicability on the development of tailored biosensors for primary screening of PET hydrolases and enzyme condition screening, demonstrating the potential of statistical modelling in optimising biosensors for tailored industrial and environmental applications.</div></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":"19 ","pages":"Article e00250"},"PeriodicalIF":3.7,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142652721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kesi Kurnia, Elena Efimova, Ville Santala, Suvi Santala
{"title":"Metabolic engineering of Acinetobacter baylyi ADP1 for naringenin production","authors":"Kesi Kurnia, Elena Efimova, Ville Santala, Suvi Santala","doi":"10.1016/j.mec.2024.e00249","DOIUrl":"10.1016/j.mec.2024.e00249","url":null,"abstract":"<div><div>Naringenin, a flavanone and a precursor for a variety of flavonoids, has potential applications in the health and pharmaceutical sectors. The biological production of naringenin using genetically engineered microbes is considered as a promising strategy. The naringenin synthesis pathway involving chalcone synthase (CHS) and chalcone isomerase (CHI) relies on the efficient supply of key substrates, malonyl-CoA and <em>p</em>-coumaroyl-CoA. In this research, we utilized a soil bacterium, <em>Acinetobacter baylyi</em> ADP1, which exhibits several characteristics that make it a suitable candidate for naringenin biosynthesis; the strain naturally tolerates and can uptake and metabolize <em>p</em>-coumaric acid, a primary compound in alkaline-pretreated lignin and a precursor for naringenin production. <em>A. baylyi</em> ADP1 also produces intracellular lipids, such as wax esters, thereby being able to provide malonyl-CoA for naringenin biosynthesis. Moreover, the genomic engineering of this strain is notably straightforward. In the course of the construction of a naringenin-producing strain, the <em>p</em>-coumarate catabolism was eliminated by a single gene knockout (Δ<em>hcaA</em>) and various combinations of plant-derived CHS and CHI were evaluated. The best performance was obtained by a novel combination of genes encoding for a CHS from <em>Hypericum androsaemum</em> and a CHI from <em>Medicago sativa,</em> that enabled the production of 17.9 mg/L naringenin in batch cultivations from <em>p</em>-coumarate. Furthermore, the implementation of a fed-batch system led to a 3.7-fold increase (66.4 mg/L) in naringenin production. These findings underscore the potential of <em>A. baylyi</em> ADP1 as a host for naringenin biosynthesis as well as advancement of lignin-based bioproduction.</div></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":"19 ","pages":"Article e00249"},"PeriodicalIF":3.7,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142578568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Renjing Jiang , Zhenrui Yue , Lanyu Shang , Dong Wang , Na Wei
{"title":"PEZy-miner: An artificial intelligence driven approach for the discovery of plastic-degrading enzyme candidates","authors":"Renjing Jiang , Zhenrui Yue , Lanyu Shang , Dong Wang , Na Wei","doi":"10.1016/j.mec.2024.e00248","DOIUrl":"10.1016/j.mec.2024.e00248","url":null,"abstract":"<div><p>Plastic waste has caused a global environmental crisis. Biocatalytic depolymerization mediated by enzymes has emerged as an efficient and sustainable alternative for plastic treatment and recycling. However, it is challenging and time-consuming to discover novel plastic-degrading enzymes using conventional cultivation-based or omics methods. There is a growing interest in developing effective computational methods to identify new enzymes with desirable plastic degradation functionalities by exploring the ever-increasing databases of protein sequences. In this study, we designed an innovative machine learning-based framework, named PEZy-Miner, to mine for enzymes with high potential in degrading plastics of interest. Two datasets integrating information from experimentally verified enzymes and homologs with unknown plastic-degrading activity were created respectively, covering eleven types of plastic substrates. Protein language models and binary classification models were developed to predict enzymatic degradation of plastics along with confidence and uncertainty estimation. PEZy-Miner exhibited high prediction accuracy and stability when validated on experimentally verified enzymes. Furthermore, by masking the experimentally verified enzymes and blending them into homolog dataset, PEZy-Miner effectively concentrated the experimentally verified entries by 14∼30 times while shortlisting promising plastic-degrading enzyme candidates. We applied PEZy-Miner to 0.1 million putative sequences, out of which 27 new sequences were identified with high confidence. This study provided a new computational tool for mining and recommending promising new plastic-degrading enzymes.</p></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":"19 ","pages":"Article e00248"},"PeriodicalIF":3.7,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214030124000178/pdfft?md5=a6ab15db96315a11ed6d106b7d4eb890&pid=1-s2.0-S2214030124000178-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142158312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Production of (R)-citramalate by engineered Saccharomyces cerevisiae","authors":"Ryosuke Mitsui , Akihiko Kondo , Tomokazu Shirai","doi":"10.1016/j.mec.2024.e00247","DOIUrl":"10.1016/j.mec.2024.e00247","url":null,"abstract":"<div><p>The budding yeast, <em>Saccharomyces cerevisiae</em>, has a high tolerance to organic acids and alcohols, and thus grows well under toxic concentrations of various compounds in the culture medium, potentially allowing for highly efficient compound production. (<em>R</em>)-citramalate is a raw material for methyl methacrylate and can be used as a metabolic intermediate in the biosynthesis of higher alcohols. (<em>R</em>)-citramalate is synthesized from pyruvate and acetyl-CoA. Unlike <em>Escherichia coli</em>, <em>S. cerevisiae</em> has organelles, and its intracellular metabolites are compartmentalized, preventing full use of intracellular acetyl-CoA. Therefore, in this study, to increase the amount of cytosolic acetyl-CoA for highly efficient production of (<em>R</em>)-citramalate, we inhibited the transport of cytosolic acetyl-CoA and pyruvate to the mitochondria. We also constructed a heterologous pathway to supply cytosolic acetyl-CoA. Additionally, we attempted to export (<em>R</em>)-citramalate from cells by expressing a heterologous dicarboxylate transporter gene. We evaluated the effects of these approaches on (<em>R</em>)-citramalate production and constructed a final strain by combining these positive approaches. The resulting strain produced 16.5 mM (<em>R</em>)-citramalate in batch culture flasks. This is the first report of (<em>R</em>)-citramalate production by recombinant <em>S. cerevisiae</em>, and the (<em>R</em>)-citramalate production by recombinant yeast achieved in this study was the highest reported to date.</p></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":"19 ","pages":"Article e00247"},"PeriodicalIF":3.7,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214030124000166/pdfft?md5=8e77960467f6df90982ae565f50fc7ce&pid=1-s2.0-S2214030124000166-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141985411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ryan S. Wang, Siang-Wun Siao, Jessica C. Wang, Patrick Y. Lin, Claire R. Shen
{"title":"Engineering thioesterase as a driving force for novel itaconate production via its degradation scheme","authors":"Ryan S. Wang, Siang-Wun Siao, Jessica C. Wang, Patrick Y. Lin, Claire R. Shen","doi":"10.1016/j.mec.2024.e00246","DOIUrl":"10.1016/j.mec.2024.e00246","url":null,"abstract":"<div><p>Incorporation of irreversible steps in pathway design enhances the overall thermodynamic favorability and often leads to better bioconversion yield given functional enzymes. Using this concept, here we constructed the first non-natural itaconate biosynthesis pathway driven by thioester hydrolysis. Itaconate is a commercially valuable platform chemical with wide applications in the synthetic polymer industry. Production of itaconate has long relied on the decarboxylation of TCA cycle intermediate cis-aconitate as the only biosynthetic route. Inspired by nature's design of itaconate detoxification, here we engineered a novel itaconate producing pathway orthogonal to native metabolism with no requirement of auxotrophic knock-out. The reversed degradation pathway initiates with pyruvate and acetyl-CoA condensation forming (S)-citramalyl-CoA, followed by its dehydration and isomerization into itaconyl-CoA then hydrolysis into itaconate. Phenylacetyl-CoA thioesterase (PaaI) from <em>Escherichia</em> <em>coli</em> was identified via screening to deliver the highest itaconate formation efficiency when coupled to the reversible activity of citramalate lyase and itaconyl-CoA hydratase. The preference of PaaI towards itaconyl-CoA hydrolysis over acetyl-CoA and (S)-citramalyl-CoA also minimized the inevitable precursor loss due to enzyme promiscuity. With acetate recycling, acetyl-CoA conservation, and condition optimization, we achieved a final itaconate titer of 1 g/L using the thioesterase driven pathway, which is a significant improvement compared to the original degradation pathway based on CoA transferase. This study illustrates the significance of thermodynamic favorability as a design principle in pathway engineering.</p></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":"19 ","pages":"Article e00246"},"PeriodicalIF":3.7,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214030124000154/pdfft?md5=8638d3ac45e484bb976c59dea9cff40b&pid=1-s2.0-S2214030124000154-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141963669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}