{"title":"13C-metabolic flux analysis of Saccharomyces cerevisiae in complex media","authors":"Hayato Fujiwara , Nobuyuki Okahashi , Taisuke Seike , Fumio Matsuda","doi":"10.1016/j.mec.2025.e00260","DOIUrl":null,"url":null,"abstract":"<div><div><em>Saccharomyces cerevisiae</em> is often cultivated in complex media for applications in food and other biochemical production. However, <sup>13</sup>C-metabolic flux analysis (<sup>13</sup>C-MFA) has been conducted for <em>S. cerevisiae</em> cultivated in synthetic media, resulting in a limited understanding of the metabolic flux distributions under the complex media. In this study, <sup>13</sup>C-MFA was applied to <em>S. cerevisiae</em> cultivated in complex media to quantify the metabolic fluxes in the central metabolic network. <em>S. cerevisiae</em> was cultivated in a synthetic dextrose (SD) medium supplemented with 20 amino acids (SD + AA) and yeast extract peptone dextrose (YPD) medium. The results revealed that glutamic acid, glutamine, aspartic acid, and asparagine are incorporated into the TCA cycle as carbon sources in parallel with glucose consumption. Based on these findings, we successfully conducted <sup>13</sup>C-MFA of <em>S. cerevisiae</em> cultivated in SD + AA and YPD media using parallel labeling and measured amino acid uptake rates. Furthermore, we applied the developed approach to <sup>13</sup>C-MFA of yeast cultivated in malt extract medium. The analysis revealed that the metabolic flux through the anaplerotic and oxidative pentose phosphate pathways was lower in complex media than in synthetic media. Owing to the reduced carbon loss by the branching pathways, carbon flow toward ethanol production via glycolysis could be elevated. <sup>13</sup>C-MFA of <em>S. cerevisiae</em> cultured in complex media provides valuable insights for metabolic engineering and process optimization in industrial yeast fermentation.</div></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":"20 ","pages":"Article e00260"},"PeriodicalIF":3.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic Engineering Communications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214030125000045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Saccharomyces cerevisiae is often cultivated in complex media for applications in food and other biochemical production. However, 13C-metabolic flux analysis (13C-MFA) has been conducted for S. cerevisiae cultivated in synthetic media, resulting in a limited understanding of the metabolic flux distributions under the complex media. In this study, 13C-MFA was applied to S. cerevisiae cultivated in complex media to quantify the metabolic fluxes in the central metabolic network. S. cerevisiae was cultivated in a synthetic dextrose (SD) medium supplemented with 20 amino acids (SD + AA) and yeast extract peptone dextrose (YPD) medium. The results revealed that glutamic acid, glutamine, aspartic acid, and asparagine are incorporated into the TCA cycle as carbon sources in parallel with glucose consumption. Based on these findings, we successfully conducted 13C-MFA of S. cerevisiae cultivated in SD + AA and YPD media using parallel labeling and measured amino acid uptake rates. Furthermore, we applied the developed approach to 13C-MFA of yeast cultivated in malt extract medium. The analysis revealed that the metabolic flux through the anaplerotic and oxidative pentose phosphate pathways was lower in complex media than in synthetic media. Owing to the reduced carbon loss by the branching pathways, carbon flow toward ethanol production via glycolysis could be elevated. 13C-MFA of S. cerevisiae cultured in complex media provides valuable insights for metabolic engineering and process optimization in industrial yeast fermentation.
期刊介绍:
Metabolic Engineering Communications, a companion title to Metabolic Engineering (MBE), is devoted to publishing original research in the areas of metabolic engineering, synthetic biology, computational biology and systems biology for problems related to metabolism and the engineering of metabolism for the production of fuels, chemicals, and pharmaceuticals. The journal will carry articles on the design, construction, and analysis of biological systems ranging from pathway components to biological complexes and genomes (including genomic, analytical and bioinformatics methods) in suitable host cells to allow them to produce novel compounds of industrial and medical interest. Demonstrations of regulatory designs and synthetic circuits that alter the performance of biochemical pathways and cellular processes will also be presented. Metabolic Engineering Communications complements MBE by publishing articles that are either shorter than those published in the full journal, or which describe key elements of larger metabolic engineering efforts.