Venkatachalam Narayanan , Anders G. Sandström , Marie F. Gorwa-Grauslund
{"title":"Re-evaluation of the impact of BUD21 deletion on xylose utilization by Saccharomyces cerevisiae","authors":"Venkatachalam Narayanan , Anders G. Sandström , Marie F. Gorwa-Grauslund","doi":"10.1016/j.mec.2023.e00218","DOIUrl":null,"url":null,"abstract":"<div><p>Various rational metabolic engineering and random approaches have been applied to introduce and improve xylose utilization and ethanol productivity by <em>Saccharomyces cerevisiae</em>. Among them, the <em>BUD21</em> gene was identified as an interesting candidate for enhancing xylose consumption as its deletion appeared to be sufficient to improve growth, substrate utilization and ethanol productivity on xylose, even in a laboratory strain lacking a heterologous xylose pathway. The present study aimed at studying the influence of <em>BUD21</em> deletion in recombinant strains carrying heterologous oxido-reductive xylose utilization pathway. The positive effect of <em>BUD21</em> gene deletion on aerobic growth and xylose utilization could not be confirmed in two non-engineered laboratory strains (BY4741 and CEN.PK 113-7D) that were grown in YP rich medium with 20 g/L xylose as sole carbon source, despite the fact that effective deletion of <em>BUD21</em> gene was confirmed using both genotypic (colony PCR) and phenotypic (heat sensitive phenotype of the <em>BUD21</em> deletion mutant) control experiments. Therefore, the effect of <em>BUD21</em> deletion on xylose fermentation might be strain- or medium-dependent.</p></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic Engineering Communications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214030123000019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Various rational metabolic engineering and random approaches have been applied to introduce and improve xylose utilization and ethanol productivity by Saccharomyces cerevisiae. Among them, the BUD21 gene was identified as an interesting candidate for enhancing xylose consumption as its deletion appeared to be sufficient to improve growth, substrate utilization and ethanol productivity on xylose, even in a laboratory strain lacking a heterologous xylose pathway. The present study aimed at studying the influence of BUD21 deletion in recombinant strains carrying heterologous oxido-reductive xylose utilization pathway. The positive effect of BUD21 gene deletion on aerobic growth and xylose utilization could not be confirmed in two non-engineered laboratory strains (BY4741 and CEN.PK 113-7D) that were grown in YP rich medium with 20 g/L xylose as sole carbon source, despite the fact that effective deletion of BUD21 gene was confirmed using both genotypic (colony PCR) and phenotypic (heat sensitive phenotype of the BUD21 deletion mutant) control experiments. Therefore, the effect of BUD21 deletion on xylose fermentation might be strain- or medium-dependent.
期刊介绍:
Metabolic Engineering Communications, a companion title to Metabolic Engineering (MBE), is devoted to publishing original research in the areas of metabolic engineering, synthetic biology, computational biology and systems biology for problems related to metabolism and the engineering of metabolism for the production of fuels, chemicals, and pharmaceuticals. The journal will carry articles on the design, construction, and analysis of biological systems ranging from pathway components to biological complexes and genomes (including genomic, analytical and bioinformatics methods) in suitable host cells to allow them to produce novel compounds of industrial and medical interest. Demonstrations of regulatory designs and synthetic circuits that alter the performance of biochemical pathways and cellular processes will also be presented. Metabolic Engineering Communications complements MBE by publishing articles that are either shorter than those published in the full journal, or which describe key elements of larger metabolic engineering efforts.