Engineering of Yarrowia lipolytica for terpenoid production

IF 3.7 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Jonathan Asmund Arnesen, Irina Borodina
{"title":"Engineering of Yarrowia lipolytica for terpenoid production","authors":"Jonathan Asmund Arnesen,&nbsp;Irina Borodina","doi":"10.1016/j.mec.2022.e00213","DOIUrl":null,"url":null,"abstract":"<div><p>Terpenoids are a group of chemicals of great importance for human health and prosperity. Terpenoids can be used for human and animal nutrition, treating diseases, enhancing agricultural output, biofuels, fragrances, cosmetics, and flavouring. However, due to the rapid depletion of global natural resources and manufacturing practices relying on unsustainable petrochemical synthesis, there is a need for economic alternatives to supply the world's demand for these essential chemicals. Microbial biosynthesis offers the means to develop scalable and sustainable bioprocesses for terpenoid production. In particular, the non-conventional yeast <em>Yarrowia lipolytica</em> demonstrates excellent potential as a chassis for terpenoid production due to its amenability to industrial production scale-up, genetic engineering, and high accumulation of terpenoid precursors. This review aims to illustrate the scientific progress in developing <em>Y. lipolytica</em> terpenoid cell factories, focusing on metabolic engineering approaches for strain improvement and cultivation optimization.</p></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":"15 ","pages":"Article e00213"},"PeriodicalIF":3.7000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9663531/pdf/","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic Engineering Communications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214030122000220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 6

Abstract

Terpenoids are a group of chemicals of great importance for human health and prosperity. Terpenoids can be used for human and animal nutrition, treating diseases, enhancing agricultural output, biofuels, fragrances, cosmetics, and flavouring. However, due to the rapid depletion of global natural resources and manufacturing practices relying on unsustainable petrochemical synthesis, there is a need for economic alternatives to supply the world's demand for these essential chemicals. Microbial biosynthesis offers the means to develop scalable and sustainable bioprocesses for terpenoid production. In particular, the non-conventional yeast Yarrowia lipolytica demonstrates excellent potential as a chassis for terpenoid production due to its amenability to industrial production scale-up, genetic engineering, and high accumulation of terpenoid precursors. This review aims to illustrate the scientific progress in developing Y. lipolytica terpenoid cell factories, focusing on metabolic engineering approaches for strain improvement and cultivation optimization.

Abstract Image

Abstract Image

产萜类化合物的聚脂耶氏菌工程
萜类化合物是一组对人类健康和繁荣非常重要的化学物质。萜类化合物可用于人类和动物营养、治疗疾病、提高农业产量、生物燃料、香料、化妆品和调味剂。然而,由于全球自然资源的迅速枯竭和依赖于不可持续的石化合成的制造实践,需要经济的替代品来满足世界对这些基本化学品的需求。微生物生物合成为开发可扩展和可持续的萜类化合物生产生物工艺提供了手段。特别是,由于其易于工业化生产规模扩大、基因工程和萜类前体的高积累,非常规酵母解脂耶氏酵母表现出作为萜类生产的良好潜力。本文综述了脂肪瘤萜类细胞工厂的科学进展,重点介绍了代谢工程方法在菌株改良和培养优化方面的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Metabolic Engineering Communications
Metabolic Engineering Communications Medicine-Endocrinology, Diabetes and Metabolism
CiteScore
13.30
自引率
1.90%
发文量
22
审稿时长
18 weeks
期刊介绍: Metabolic Engineering Communications, a companion title to Metabolic Engineering (MBE), is devoted to publishing original research in the areas of metabolic engineering, synthetic biology, computational biology and systems biology for problems related to metabolism and the engineering of metabolism for the production of fuels, chemicals, and pharmaceuticals. The journal will carry articles on the design, construction, and analysis of biological systems ranging from pathway components to biological complexes and genomes (including genomic, analytical and bioinformatics methods) in suitable host cells to allow them to produce novel compounds of industrial and medical interest. Demonstrations of regulatory designs and synthetic circuits that alter the performance of biochemical pathways and cellular processes will also be presented. Metabolic Engineering Communications complements MBE by publishing articles that are either shorter than those published in the full journal, or which describe key elements of larger metabolic engineering efforts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信