Metallurgical and Materials Transactions B最新文献

筛选
英文 中文
TiO2 and Reducing Gas: Intricate Relationships to Direct Reduction of Iron Oxide Pellets 二氧化钛和还原气体:氧化铁颗粒直接还原的复杂关系
Metallurgical and Materials Transactions B Pub Date : 2024-07-08 DOI: 10.1007/s11663-024-03168-1
Pasquale Cavaliere, Behzad Sadeghi, Aleksandra Laska, Damian Koszelow
{"title":"TiO2 and Reducing Gas: Intricate Relationships to Direct Reduction of Iron Oxide Pellets","authors":"Pasquale Cavaliere, Behzad Sadeghi, Aleksandra Laska, Damian Koszelow","doi":"10.1007/s11663-024-03168-1","DOIUrl":"https://doi.org/10.1007/s11663-024-03168-1","url":null,"abstract":"<p>In response to the imperative for sustainable iron production with reduced CO<sub>2</sub> emissions, this study delves into the intricate role of TiO<sub>2</sub> in the direct reduction of iron oxide pellets. The TiO<sub>2</sub>-dependent reducibility of iron oxide pellets utilizing H<sub>2</sub> and CO gas across varied temperatures and gas compositions is thoroughly investigated. Our findings unveil the nuanced nature of the TiO<sub>2</sub> effect, underscored by its concentration-dependent behavior, revealing an optimal range between 1 and 1.5 pct TiO<sub>2</sub>, where a neutral or positive impact on reduction kinetics and diffusion coefficient is observed. Notably, the synergistic interplay of CO and H<sub>2</sub> at 1000 °C emerges as particularly efficacious, suggesting complementary effects on the reduction process. The introduction of H<sub>2</sub> into the reducing atmosphere regulated by CO not only extends the transition range but also markedly expedites the rate of reduction. Furthermore, our study highlights the temperature sensitivity of the TiO<sub>2</sub> effect, with higher TiO<sub>2</sub> content correlating with prolonged reduction time in a 100 pct H<sub>2</sub> atmosphere at 900 °C. In a 100 pct H<sub>2</sub> atmosphere, the non-contributory role of TiO<sub>2</sub> stems from the water-gas shift reaction. Conversely, introducing H<sub>2</sub> into a CO-controlled reducing atmosphere with TiO<sub>2</sub> enhances the transition range and expedites the reduction rate. Additionally, our findings underscore the role of total iron content, revealing a direct correlation with the reduction process.</p>","PeriodicalId":18613,"journal":{"name":"Metallurgical and Materials Transactions B","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141566967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimization of the Evaluation Method for Bentonite Used in Iron Ore Pelletizing 优化铁矿石造粒所用膨润土的评价方法
Metallurgical and Materials Transactions B Pub Date : 2024-07-08 DOI: 10.1007/s11663-024-03187-y
Wei Mo, Yuxin Feng, Zeping Wang, Jinlin Yang, Jinpeng Feng, Xiujuan Su
{"title":"Optimization of the Evaluation Method for Bentonite Used in Iron Ore Pelletizing","authors":"Wei Mo, Yuxin Feng, Zeping Wang, Jinlin Yang, Jinpeng Feng, Xiujuan Su","doi":"10.1007/s11663-024-03187-y","DOIUrl":"https://doi.org/10.1007/s11663-024-03187-y","url":null,"abstract":"<p>Bentonite is an essential binder in the iron ore pelletization process. However, limited research has been conducted on the correlation between the physical and chemical properties of bentonite and its pelletizing performances, while the evaluation criteria for pelletizing bentonite have not been standardized. To optimize the current evaluation methods, this study tested the physical and chemical properties of five representative bentonites, as well as their green balling performance after pelletizing. Additionally, a multiple regression model was constructed using R. Stepwise regression and relative weight analysis were used to optimize and evaluate the indicators of bentonite. The results showed that the raw ball performance was mainly affected by water absorption (WA), swelling index (SI), and swelling capacity (SC). The dry ball performance was mainly affected more by methylene blue index (MBI) and cation exchange capacity (CEC). The following stepwise regression analysis revealed that WA, CEC, and SC were significant predictors for green ball drop strength; WA and SI for green ball compressive strength; and WA, MBI, and SC for dry ball compressive strength. The multiple regression model developed in this study exhibits high goodness of fit and accuracy, making it a valuable way for assessing the impact of different quality bentonites on pelletizing performance as well as optimizing the evaluation methodology of bentonite’s performance in iron ore pelletization.</p>","PeriodicalId":18613,"journal":{"name":"Metallurgical and Materials Transactions B","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141566964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Large Eddy Simulation of Molten Steel Flow and Inclusion Transport in a New Butterfly-Type Induction Heating Tundish 新型蝶形感应加热连铸机中钢水流动和夹杂物迁移的大涡流模拟
Metallurgical and Materials Transactions B Pub Date : 2024-07-08 DOI: 10.1007/s11663-024-03201-3
Ning Wang, Zhongqiu Liu, Huang Cheng, Fengsheng Qi, Changjun Wang, Li Zhang, Baokuan Li
{"title":"Large Eddy Simulation of Molten Steel Flow and Inclusion Transport in a New Butterfly-Type Induction Heating Tundish","authors":"Ning Wang, Zhongqiu Liu, Huang Cheng, Fengsheng Qi, Changjun Wang, Li Zhang, Baokuan Li","doi":"10.1007/s11663-024-03201-3","DOIUrl":"https://doi.org/10.1007/s11663-024-03201-3","url":null,"abstract":"<p>In addressing the retrofitting issues of conventional non-induction heating tundish, a novel butterfly-type induction heating tundish model was devised. A three-dimensional coupled mathematical model of magnetic, thermal, and fluid fields was established to investigate the temperature distribution, flow characteristics, and temperature rise curves within the butterfly-type tundish. The model for inclusion motion and removal, based on Large Eddy Simulation (LES), was devised, integrating factors such as normal critical velocity, coefficient of restitution, and critical incident angle at the wall boundary conditions to provide a more precise depiction of the reflection and adsorption processes of inclusions on the tundish wall. The findings suggest that induction heating can effectively offset the temperature loss of the molten steel and enhance the removal rate of inclusions, particularly those of large size. The outlet temperature increases by − 15 K, 7 K, 15 K, and 26 K, and the total removal rate of inclusions reaches 69.18, 83.37, 87.69, and 92.01 pct at 0, 600, 800, and 1000 kW, respectively. The channel serves as the primary site for inclusion removal when employing induction heating. Among these, the removal rates within the channel and at the slag layer exhibit a positive correlation with the inclusion diameter, while the remaining wall removal rates show a negative correlation. The implementation of induction heating technology leads to a notable decrease in the entry of large-sized inclusions into the mold.</p>","PeriodicalId":18613,"journal":{"name":"Metallurgical and Materials Transactions B","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141567098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phase Diagram Study of the Nd2O3-SiO2-FeO-Fe2O3 System at 1773 K in Air 空气中 1773 K 温度下的 Nd2O3-SiO2-FeO-Fe2O3 系统相图研究
Metallurgical and Materials Transactions B Pub Date : 2024-07-08 DOI: 10.1007/s11663-024-03189-w
Wenjie Wei, Shu Li, Zemeng Weng, Boya Zhang, Zhanmin Cao
{"title":"Phase Diagram Study of the Nd2O3-SiO2-FeO-Fe2O3 System at 1773 K in Air","authors":"Wenjie Wei, Shu Li, Zemeng Weng, Boya Zhang, Zhanmin Cao","doi":"10.1007/s11663-024-03189-w","DOIUrl":"https://doi.org/10.1007/s11663-024-03189-w","url":null,"abstract":"<p>The phase diagram information of the Nd<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub>-FeO-Fe<sub>2</sub>O<sub>3</sub> system is basic for the design and development of slag for recycling NdFeB magnets by pyrometallurgical processes. The equilibria phase relations of the Nd<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub>-FeO-Fe<sub>2</sub>O<sub>3</sub> system were investigated at 1773 K in air using a high-temperature isothermal equilibration technique followed by quenching. Seven two-phase equilibria regions and seven three-phase equilibria regions were observed by X-ray diffraction (XRD) and scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS) analysis of quenched samples. Ternary compounds Nd<sub>9.33</sub>Si<sub>6−<i>x</i></sub>Fe<sub><i>x</i></sub>O<sub>26-δ</sub> and Nd<sub>0.67</sub>Si<sub>0.13</sub>Fe<sub>0.2</sub>O<sub>δ</sub> were found. The 1773 K isothermal section was constructed for the Nd<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub>-FeO-Fe<sub>2</sub>O<sub>3</sub> system.</p>","PeriodicalId":18613,"journal":{"name":"Metallurgical and Materials Transactions B","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141566969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interface Diffusion and Reaction Mechanisms of Fe3O4–MgO System in Pellets Under Different Atmospheres 不同气氛下颗粒中 Fe3O4-MgO 体系的界面扩散和反应机理
Metallurgical and Materials Transactions B Pub Date : 2024-07-08 DOI: 10.1007/s11663-024-03202-2
Yuanbo Zhang, Kun Lin, Zijian Su, Xijun Chen, Ke Ma, Tao Jiang
{"title":"Interface Diffusion and Reaction Mechanisms of Fe3O4–MgO System in Pellets Under Different Atmospheres","authors":"Yuanbo Zhang, Kun Lin, Zijian Su, Xijun Chen, Ke Ma, Tao Jiang","doi":"10.1007/s11663-024-03202-2","DOIUrl":"https://doi.org/10.1007/s11663-024-03202-2","url":null,"abstract":"<p>The proportion of pellets in the blast furnace charge structure is gradually increasing, among which magnesium-bearing fluxed pellets have been widely applied due to their excellent metallurgical properties. To further determine the consolidation mechanism in different reaction layers of magnesium-bearing fluxed pellets, the phase transformation and diffusion behaviors of Fe<sub>3</sub>O<sub>4</sub>–MgO in different roasting atmospheres were investigated in this study. The results showed that Fe<sup>2+</sup> preferentially diffused to the MgO layer and combined with Mg<sup>2+</sup> to form Mg<sub><i>y</i></sub>Fe<sub>1−<i>y</i></sub>O in inert atmosphere, and then, Fe<sup>3+</sup> and Fe<sup>2+</sup> binded to Mg<sup>2+</sup> to form [(MgO)<sub><i>x</i></sub>(FeO)<sub>1−<i>x</i></sub>]·Fe<sub>2</sub>O<sub>3</sub> (0 ≤ <i>x</i> ≤ 1). The increase of roasting temperature was favorable for the entry of Mg<sup>2+</sup> into the spinel phase. In air atmosphere, Fe<sub>3</sub>O<sub>4</sub> was first oxidized to Fe<sub>2</sub>O<sub>3</sub>. Fe<sup>3+</sup> and Mg<sup>2+</sup> counter-diffused and then combined to Mg<sub><i>x</i></sub>Fe<sub>3−<i>x</i></sub>O<sub>4</sub> (<i>x</i> = 1). Fe<sub>3</sub>O<sub>4</sub> reacted more readily with MgO in inert atmosphere than in air atmosphere. It was favorable to increase the oxygen partial pressure for Mg<sub><i>x</i></sub>Fe<sub>3−<i>x</i></sub>O<sub>4</sub> (<i>x</i> = 1) generation. The diffusion rate of Mg<sup>2+</sup> at the interface of Fe<sub>3</sub>O<sub>4</sub>–MgO system in inert atmosphere was 1.88 <i>µ</i>m/min at 1200 °C, which was faster than that of 1.49 <i>µ</i>m/min in air atmosphere.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":18613,"journal":{"name":"Metallurgical and Materials Transactions B","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141566968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unraveling the Influence of Static Magnetic Field on Carbide Precipitation and Mechanical Properties in Large-Scale H13 Hot Work Die Steel 揭示静磁场对大规模 H13 热作模具钢中碳化物析出和机械性能的影响
Metallurgical and Materials Transactions B Pub Date : 2024-07-03 DOI: 10.1007/s11663-024-03193-0
Chengkuan Ma, Mingliang Zhang, Yi Zhang, Zhonghao Sun, Qiang Li, Tianxiang Zheng, Bangfei Zhou, Zhe Shen, Biao Ding, Chunmei Liu, Yunbo Zhong
{"title":"Unraveling the Influence of Static Magnetic Field on Carbide Precipitation and Mechanical Properties in Large-Scale H13 Hot Work Die Steel","authors":"Chengkuan Ma, Mingliang Zhang, Yi Zhang, Zhonghao Sun, Qiang Li, Tianxiang Zheng, Bangfei Zhou, Zhe Shen, Biao Ding, Chunmei Liu, Yunbo Zhong","doi":"10.1007/s11663-024-03193-0","DOIUrl":"https://doi.org/10.1007/s11663-024-03193-0","url":null,"abstract":"<p>In order to evaluate the potential application advantages of static magnetic field on the development of electroslag remelted large-scale H13 steel technology, the carbides, inclusions, solute segregation and mechanical property of H13 steel were analyzed. The results demonstrated that the implementation of axial static magnetic field (ASMF), the area fraction and size of carbides decreased, and the segregation rate of the elements (C, Mo, V and Cr) decreased. The reason is that the application of ASMF could shorter the local solidification time, decrease the dendrite spacing, alleviate the degree of interdendritic segregation, which limits the time and space for the generation and further growth of carbides. After ASMF was applied, there were lesser and smaller inclusions in H13 steel. Smaller droplet and shallower metal pool are the consequence of utilizing ASMF, which improves the kinetic conditions and removal process that inclusions migration to the slag-metal interfaces. Moreover, samples after forged annealing showed that the average grain size of H13 steel decreased when ASMF was applied, which significantly enhances the mechanical properties. In the absence of ASMF, the product of strength and elongation was 22,599 MPa pct. After applying 60 mT ASMF, the product of strength and elongation increased to 28,770 MPa pct.</p>","PeriodicalId":18613,"journal":{"name":"Metallurgical and Materials Transactions B","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141547902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical Investigation of Particle Size on the Performance of Ironmaking Blast Furnace 粒度对炼铁高炉性能的数值研究
Metallurgical and Materials Transactions B Pub Date : 2024-07-02 DOI: 10.1007/s11663-024-03158-3
Lulu Jiao, Xinyang Zhang, Shibo Kuang, Aibing Yu
{"title":"Numerical Investigation of Particle Size on the Performance of Ironmaking Blast Furnace","authors":"Lulu Jiao, Xinyang Zhang, Shibo Kuang, Aibing Yu","doi":"10.1007/s11663-024-03158-3","DOIUrl":"https://doi.org/10.1007/s11663-024-03158-3","url":null,"abstract":"<p>Coke and ore sizes are important to the efficiency and stability of blast furnace (BF) operation in practice. However, their selection is usually determined by experience and there is no systematic study on the effects of ore and coke sizes on BF operation. This paper presents a numerical study on the multiphase flow and thermochemical behaviors inside the BF with different ore and coke sizes. This is done based on a recently developed 3D multifluid BF process model. The validation of this model is first confirmed by various applications. It is then used to study the effect of particle size on BF performance. The results show that as coke and ore sizes decrease, the thermochemical utilization efficiency is improved, which is reflected in low coke rate, low top gas temperature, high top gas utilization factor, and high productivity. However, there may be a minimum particle size for a given BF. Three indicators, namely gas pressure drop, liquid flooding in the dripping zone, and particle fluidization at the burden surface are used to determine this minimum particle size. Under the present conditions considered, the suggested minimum coke size should not be less than 20 mm and the suggested ore size should not be less than 12.5 mm. In addition, the effect of ore size on BF global performance indicators, <i>e.g.</i>, fuel rate and productivity, is more significant than coke size. In terms of inner states, as ore size increases, the solid temperature drops in the BF shaft and the CZ position drops accordingly. On the contrary, as coke size increases, the solid temperature increases significantly in the BF shaft and the CZ position increases accordingly. Consistently, the increase of ore and coke sizes both increases the CZ thickness. Furthermore, the effect of locally charging large ore and coke particles is also studied. The results show that under the preset simulation conditions, locally charging large ore particles significantly reduces the gas pressure drop, but increases the fuel rate; however, locally charging large coke particles has limited influence on BF global performance indicators. The results provide some valuable guidance for coke and ore size selection in BF practice.</p>","PeriodicalId":18613,"journal":{"name":"Metallurgical and Materials Transactions B","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141516324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of Genesis on Mechanochemical Activation and Reactivity of Boehmite Prepared by Thermal and Hydrothermal Transformation of Gibbsite 成因对吉布斯特热转化和水热转化制备的勃姆石的机械化学活化和反应活性的影响
Metallurgical and Materials Transactions B Pub Date : 2024-07-01 DOI: 10.1007/s11663-024-03180-5
Georg Greifzu, Thomas C. Alex, Ansu J. Kailath, Mamoru Senna, Michael Stelter, Rakesh Kumar
{"title":"Influence of Genesis on Mechanochemical Activation and Reactivity of Boehmite Prepared by Thermal and Hydrothermal Transformation of Gibbsite","authors":"Georg Greifzu, Thomas C. Alex, Ansu J. Kailath, Mamoru Senna, Michael Stelter, Rakesh Kumar","doi":"10.1007/s11663-024-03180-5","DOIUrl":"https://doi.org/10.1007/s11663-024-03180-5","url":null,"abstract":"<p>The focus of this paper is on the mechanical activation and reactivity of boehmite (<i>γ</i>-AlOOH) synthesized by thermal transformation (B-TH) and hydrothermal transformation (B-HT) of the same gibbsite (Al<sub>2</sub>O<sub>3</sub>·3H<sub>2</sub>O) precursor. The central idea is to emphasize the role of sample genesis. The samples used had similar size distribution and largely differed in their BET surface area, 264 and 2.98 m<sup>2</sup>/g for B-TH and B-HT, respectively. Mechanical activation was carried out for different durations, up to 240 minutes, using a planetary mill. On milling, the span of change in physicochemical properties, namely geometric specific surface area, BET specific surface area, degree of amorphization, microcrystalline dimension, and macro strain (in 〈020〉/stacking direction of AlO<sub>4</sub>(OH)<sub>2</sub> octahedra layers) was more for B-TH vis-à-vis B-HT. The anomalous decrease in the BET surface area reported in the literature for B-TH is not observed in B-HT. The nature of alteration in pore size distributions with milling time is used to present a plausible explanation for the contrasting change in BET surface area. The samples also showed the opposite sign for macro strain; a negative sign for B-TH which was characterized by a relatively weaker interlayer bonding. The reactivity of the samples was evaluated in terms of leachability in alkali and the lowering of boehmite to <i>γ</i>-Al<sub>2</sub>O<sub>3</sub> transformation temperature. In general, higher reactivity was observed for B-TH vis-à-vis B-HT. The reactivity was correlated with physicochemical changes. Despite wide differences in reactivity, the change in reactivity could be expressed in terms of simple multivariate equations with high correlation coefficients.</p>","PeriodicalId":18613,"journal":{"name":"Metallurgical and Materials Transactions B","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141506057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine Learning Combining High-Temperature Experiments for the Prediction of Wetting Angle of Mold Fluxes 机器学习结合高温实验预测模具助焊剂的润湿角
Metallurgical and Materials Transactions B Pub Date : 2024-07-01 DOI: 10.1007/s11663-024-03191-2
Zichao Wang, Kun Dou, Wanlin Wang, Haihui Zhang, Jie Zeng
{"title":"Machine Learning Combining High-Temperature Experiments for the Prediction of Wetting Angle of Mold Fluxes","authors":"Zichao Wang, Kun Dou, Wanlin Wang, Haihui Zhang, Jie Zeng","doi":"10.1007/s11663-024-03191-2","DOIUrl":"https://doi.org/10.1007/s11663-024-03191-2","url":null,"abstract":"<p>Direct measurement of the wetting angles of the mold fluxes is a strenuous work and time-consuming, and a mathematical model relating the wetting angle of mold flux to its chemical composition is rarely found up to now. In this work, multiple linear regression (MLR), backpropagation neural network (BPNN), and GA-BP neural network (GA-BPNN) are used to model and predict the wetting angle of mold flux. Results show that the accuracy of MLR, BPNN, and GA-BPNN model is 76, 62, and 83 pct; the GA-BPNN model has the highest prediction accuracy. In addition, according to the standardized coefficients in the MLR model, the influence degree of different chemical components on the wetting angle of mold fluxes is analyzed. The importance of the influence of various components on the wetting angle is Fe<sub>2</sub>O<sub>3</sub>, F<sup>−</sup>, Li<sub>2</sub>O, Na<sub>2</sub>O, R, MnO, Al<sub>2</sub>O<sub>3</sub>, B<sub>2</sub>O<sub>3</sub>, and MgO from high to low. Among them, Fe<sub>2</sub>O<sub>3</sub>, Li<sub>2</sub>O, Na<sub>2</sub>O, R, and MnO have a negative effect on the wetting angle of mold flux, while F<sup>−</sup>, Al<sub>2</sub>O<sub>3</sub>, B<sub>2</sub>O<sub>3</sub>, and MgO have a positive effect. The established GA-BPNN model could facilitate the design and optimization of mold slag in the steel continuous casting process.</p>","PeriodicalId":18613,"journal":{"name":"Metallurgical and Materials Transactions B","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141516266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Refractory Crucibles on Inclusions in Ce-Containing High-Aluminum Steel 耐火坩埚对含铈高铝钢中夹杂物的影响
Metallurgical and Materials Transactions B Pub Date : 2024-06-28 DOI: 10.1007/s11663-024-03174-3
Lanqing Wang, Hangyu Zhu, Ji Chen, Jixuan Zhao
{"title":"Effect of Refractory Crucibles on Inclusions in Ce-Containing High-Aluminum Steel","authors":"Lanqing Wang, Hangyu Zhu, Ji Chen, Jixuan Zhao","doi":"10.1007/s11663-024-03174-3","DOIUrl":"https://doi.org/10.1007/s11663-024-03174-3","url":null,"abstract":"<p>With the advancement of aerospace, military and related industries, there is a persistent escalation in the performance requirements for steel. According to the actual smelting conditions, this study focuses on Ce-containing high-aluminum steel and various refractories as its research subjects. A combination of laboratory experiments and thermodynamic calculations is employed to investigate and compare the evolution mechanism of oxide inclusions in molten steel. The use of Al<sub>2</sub>O<sub>3</sub> refractory results in an increase in [Al] content, whereas both MgO refractory and MgO–MgO·Al<sub>2</sub>O<sub>3</sub> refractory lead to a decrease in [Al] content. Additionally, following the utilization of MgO refractory and MgO–MgO·Al<sub>2</sub>O<sub>3</sub> refractory, the molten steel exhibits the higher [Ce] content than when Al<sub>2</sub>O<sub>3</sub> refractory are employed (<i>t</i> = 30 minutes). Before the introduction of Ce element, the principal oxide inclusions in Al<sub>2</sub>O<sub>3</sub> refractory and MgO-containing refractory are Al<sub>2</sub>O<sub>3</sub> and MgO·Al<sub>2</sub>O<sub>3</sub> inclusion, respectively. After adding cerium-aluminum alloy, [Ce] in the molten steel replaces the element of Al in the Al<sub>2</sub>O<sub>3</sub> inclusion, transforming into CeAlO<sub>3</sub>, while [Ce] replaces the Mg element in the MgO·Al<sub>2</sub>O<sub>3</sub> inclusion, evolving into Ce–Mg–Al–O, which further reacts to form CeAlO<sub>3</sub> and Ce<sub>2</sub>O<sub>2</sub>S. Over time, the number density of inclusions first increases then gradually diminishes with various refractories. MgO refractory minimizes the number density of inclusions to 53.05 mm<sup>−2</sup>. Moreover, the number of small size inclusions in MgO–MgO·Al<sub>2</sub>O<sub>3</sub> refractories is the largest, and inclusions less than 3 <i>μ</i>m account for 78.63 pct of the total number.</p>","PeriodicalId":18613,"journal":{"name":"Metallurgical and Materials Transactions B","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141516268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信