Effect of Refractory Crucibles on Inclusions in Ce-Containing High-Aluminum Steel

Lanqing Wang, Hangyu Zhu, Ji Chen, Jixuan Zhao
{"title":"Effect of Refractory Crucibles on Inclusions in Ce-Containing High-Aluminum Steel","authors":"Lanqing Wang, Hangyu Zhu, Ji Chen, Jixuan Zhao","doi":"10.1007/s11663-024-03174-3","DOIUrl":null,"url":null,"abstract":"<p>With the advancement of aerospace, military and related industries, there is a persistent escalation in the performance requirements for steel. According to the actual smelting conditions, this study focuses on Ce-containing high-aluminum steel and various refractories as its research subjects. A combination of laboratory experiments and thermodynamic calculations is employed to investigate and compare the evolution mechanism of oxide inclusions in molten steel. The use of Al<sub>2</sub>O<sub>3</sub> refractory results in an increase in [Al] content, whereas both MgO refractory and MgO–MgO·Al<sub>2</sub>O<sub>3</sub> refractory lead to a decrease in [Al] content. Additionally, following the utilization of MgO refractory and MgO–MgO·Al<sub>2</sub>O<sub>3</sub> refractory, the molten steel exhibits the higher [Ce] content than when Al<sub>2</sub>O<sub>3</sub> refractory are employed (<i>t</i> = 30 minutes). Before the introduction of Ce element, the principal oxide inclusions in Al<sub>2</sub>O<sub>3</sub> refractory and MgO-containing refractory are Al<sub>2</sub>O<sub>3</sub> and MgO·Al<sub>2</sub>O<sub>3</sub> inclusion, respectively. After adding cerium-aluminum alloy, [Ce] in the molten steel replaces the element of Al in the Al<sub>2</sub>O<sub>3</sub> inclusion, transforming into CeAlO<sub>3</sub>, while [Ce] replaces the Mg element in the MgO·Al<sub>2</sub>O<sub>3</sub> inclusion, evolving into Ce–Mg–Al–O, which further reacts to form CeAlO<sub>3</sub> and Ce<sub>2</sub>O<sub>2</sub>S. Over time, the number density of inclusions first increases then gradually diminishes with various refractories. MgO refractory minimizes the number density of inclusions to 53.05 mm<sup>−2</sup>. Moreover, the number of small size inclusions in MgO–MgO·Al<sub>2</sub>O<sub>3</sub> refractories is the largest, and inclusions less than 3 <i>μ</i>m account for 78.63 pct of the total number.</p>","PeriodicalId":18613,"journal":{"name":"Metallurgical and Materials Transactions B","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical and Materials Transactions B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11663-024-03174-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the advancement of aerospace, military and related industries, there is a persistent escalation in the performance requirements for steel. According to the actual smelting conditions, this study focuses on Ce-containing high-aluminum steel and various refractories as its research subjects. A combination of laboratory experiments and thermodynamic calculations is employed to investigate and compare the evolution mechanism of oxide inclusions in molten steel. The use of Al2O3 refractory results in an increase in [Al] content, whereas both MgO refractory and MgO–MgO·Al2O3 refractory lead to a decrease in [Al] content. Additionally, following the utilization of MgO refractory and MgO–MgO·Al2O3 refractory, the molten steel exhibits the higher [Ce] content than when Al2O3 refractory are employed (t = 30 minutes). Before the introduction of Ce element, the principal oxide inclusions in Al2O3 refractory and MgO-containing refractory are Al2O3 and MgO·Al2O3 inclusion, respectively. After adding cerium-aluminum alloy, [Ce] in the molten steel replaces the element of Al in the Al2O3 inclusion, transforming into CeAlO3, while [Ce] replaces the Mg element in the MgO·Al2O3 inclusion, evolving into Ce–Mg–Al–O, which further reacts to form CeAlO3 and Ce2O2S. Over time, the number density of inclusions first increases then gradually diminishes with various refractories. MgO refractory minimizes the number density of inclusions to 53.05 mm−2. Moreover, the number of small size inclusions in MgO–MgO·Al2O3 refractories is the largest, and inclusions less than 3 μm account for 78.63 pct of the total number.

Abstract Image

耐火坩埚对含铈高铝钢中夹杂物的影响
随着航空航天、军事及相关行业的发展,对钢材的性能要求也在不断提高。根据实际冶炼条件,本研究以含碳高铝钢和各种耐火材料为研究对象。采用实验室实验和热力学计算相结合的方法,对钢水中氧化物夹杂物的演变机理进行了研究和比较。使用 Al2O3 耐火材料会导致[Al]含量增加,而 MgO 耐火材料和 MgO-MgO-Al2O3 耐火材料则会导致[Al]含量减少。此外,在使用氧化镁耐火材料和氧化镁-氧化镁-Al2O3 耐火材料后,钢水中的[Ce]含量高于使用 Al2O3 耐火材料时(t = 30 分钟)。在引入 Ce 元素之前,Al2O3 耐火材料和含 MgO 耐火材料中的主要氧化物夹杂物分别是 Al2O3 和 MgO-Al2O3 夹杂物。加入铈铝合金后,钢水中的[Ce]取代了 Al2O3 包裹体中的 Al 元素,转化为 CeAlO3,而[Ce]则取代了 MgO-Al2O3 包裹体中的 Mg 元素,演变为 Ce-Mg-Al-O,并进一步反应生成 CeAlO3 和 Ce2O2S。随着时间的推移,各种耐火材料的夹杂物数量密度先是增加,然后逐渐减少。氧化镁耐火材料可将夹杂物的数量密度降至 53.05 mm-2。此外,MgO-MgO-Al2O3 耐火材料中的小尺寸夹杂物数量最多,小于 3 μm 的夹杂物占总数的 78.63%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信