Interface Diffusion and Reaction Mechanisms of Fe3O4–MgO System in Pellets Under Different Atmospheres

Yuanbo Zhang, Kun Lin, Zijian Su, Xijun Chen, Ke Ma, Tao Jiang
{"title":"Interface Diffusion and Reaction Mechanisms of Fe3O4–MgO System in Pellets Under Different Atmospheres","authors":"Yuanbo Zhang, Kun Lin, Zijian Su, Xijun Chen, Ke Ma, Tao Jiang","doi":"10.1007/s11663-024-03202-2","DOIUrl":null,"url":null,"abstract":"<p>The proportion of pellets in the blast furnace charge structure is gradually increasing, among which magnesium-bearing fluxed pellets have been widely applied due to their excellent metallurgical properties. To further determine the consolidation mechanism in different reaction layers of magnesium-bearing fluxed pellets, the phase transformation and diffusion behaviors of Fe<sub>3</sub>O<sub>4</sub>–MgO in different roasting atmospheres were investigated in this study. The results showed that Fe<sup>2+</sup> preferentially diffused to the MgO layer and combined with Mg<sup>2+</sup> to form Mg<sub><i>y</i></sub>Fe<sub>1−<i>y</i></sub>O in inert atmosphere, and then, Fe<sup>3+</sup> and Fe<sup>2+</sup> binded to Mg<sup>2+</sup> to form [(MgO)<sub><i>x</i></sub>(FeO)<sub>1−<i>x</i></sub>]·Fe<sub>2</sub>O<sub>3</sub> (0 ≤ <i>x</i> ≤ 1). The increase of roasting temperature was favorable for the entry of Mg<sup>2+</sup> into the spinel phase. In air atmosphere, Fe<sub>3</sub>O<sub>4</sub> was first oxidized to Fe<sub>2</sub>O<sub>3</sub>. Fe<sup>3+</sup> and Mg<sup>2+</sup> counter-diffused and then combined to Mg<sub><i>x</i></sub>Fe<sub>3−<i>x</i></sub>O<sub>4</sub> (<i>x</i> = 1). Fe<sub>3</sub>O<sub>4</sub> reacted more readily with MgO in inert atmosphere than in air atmosphere. It was favorable to increase the oxygen partial pressure for Mg<sub><i>x</i></sub>Fe<sub>3−<i>x</i></sub>O<sub>4</sub> (<i>x</i> = 1) generation. The diffusion rate of Mg<sup>2+</sup> at the interface of Fe<sub>3</sub>O<sub>4</sub>–MgO system in inert atmosphere was 1.88 <i>µ</i>m/min at 1200 °C, which was faster than that of 1.49 <i>µ</i>m/min in air atmosphere.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":18613,"journal":{"name":"Metallurgical and Materials Transactions B","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical and Materials Transactions B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11663-024-03202-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The proportion of pellets in the blast furnace charge structure is gradually increasing, among which magnesium-bearing fluxed pellets have been widely applied due to their excellent metallurgical properties. To further determine the consolidation mechanism in different reaction layers of magnesium-bearing fluxed pellets, the phase transformation and diffusion behaviors of Fe3O4–MgO in different roasting atmospheres were investigated in this study. The results showed that Fe2+ preferentially diffused to the MgO layer and combined with Mg2+ to form MgyFe1−yO in inert atmosphere, and then, Fe3+ and Fe2+ binded to Mg2+ to form [(MgO)x(FeO)1−x]·Fe2O3 (0 ≤ x ≤ 1). The increase of roasting temperature was favorable for the entry of Mg2+ into the spinel phase. In air atmosphere, Fe3O4 was first oxidized to Fe2O3. Fe3+ and Mg2+ counter-diffused and then combined to MgxFe3−xO4 (x = 1). Fe3O4 reacted more readily with MgO in inert atmosphere than in air atmosphere. It was favorable to increase the oxygen partial pressure for MgxFe3−xO4 (x = 1) generation. The diffusion rate of Mg2+ at the interface of Fe3O4–MgO system in inert atmosphere was 1.88 µm/min at 1200 °C, which was faster than that of 1.49 µm/min in air atmosphere.

Graphical Abstract

Abstract Image

不同气氛下颗粒中 Fe3O4-MgO 体系的界面扩散和反应机理
球团在高炉炉料结构中的比例逐渐增加,其中含镁助熔球团因其优异的冶金性能而得到广泛应用。为了进一步确定含镁熔剂球团在不同反应层中的固结机理,本研究对不同焙烧气氛下 Fe3O4-MgO 的相变和扩散行为进行了研究。结果表明,在惰性气氛中,Fe2+优先扩散到MgO层并与Mg2+结合形成MgyFe1-yO,然后,Fe3+和Fe2+与Mg2+结合形成[(MgO)x(FeO)1-x]-Fe2O3(0 ≤ x ≤ 1)。焙烧温度的升高有利于 Mg2+ 进入尖晶石相。在空气气氛中,Fe3O4 首先被氧化成 Fe2O3。Fe3+ 和 Mg2+ 反向扩散,然后结合成 MgxFe3-xO4(x = 1)。在惰性气氛中,Fe3O4 比在空气中更容易与氧化镁发生反应。增加氧分压有利于生成 MgxFe3-xO4 (x = 1)。在惰性气氛中,1200 °C时Fe3O4-MgO体系界面上Mg2+的扩散速率为1.88 µm/min,比空气气氛中的1.49 µm/min快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信