Fernanda Diniz Botelho, Tanos Celmar Costa Franca, Steven R. LaPlante
{"title":"The Search for Antidotes Against Ricin","authors":"Fernanda Diniz Botelho, Tanos Celmar Costa Franca, Steven R. LaPlante","doi":"10.2174/0113895575270509231121060105","DOIUrl":"https://doi.org/10.2174/0113895575270509231121060105","url":null,"abstract":"The castor plant (Ricinus communis) is primarily known for its seeds, which contain a unique fatty acid called ricinoleic acid with several industrial and commercial applications. Castor seeds also contain ricin, a toxin considered a chemical and biological warfare agent. Despite years of investigation, there is still no effective antidote or vaccine available. However, some progress has been made, and the development of an effective treatment may be on the horizon. To provide an updated overview of this issue, we have conducted a comprehensive review of the literature on the current state of research in the fight against ricin. This mini-review is based on the reported research and aims to address the challenges faced by researchers, as well as highlight the most successful cases achieved thus far. Our goal is to encourage the scientific community to continue their efforts in this critical search.","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":"10 3 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139553768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Levothyroxine and Non-alcoholic Fatty Liver Disease: A Mini Review.","authors":"Partha Sarathi Singha, Suvendu Ghosh, Debosree Ghosh","doi":"10.2174/1389557523666230314113543","DOIUrl":"10.2174/1389557523666230314113543","url":null,"abstract":"<p><p>Levothyroxine or l-thyroxine is artificially manufactured thyroxine, which is used as a drug to treat underactive thyroid conditions in humans. The drug, levothyroxine, is consumed daily in a prescribed dose to replace the missing thyroid hormone thyroxine in an individual with an underactive thyroid, and it helps to maintain normal physiological conditions. Though it is a life-maintaining drug, it replaces the missing thyroid hormone and performs the necessary daily metabolic functions in our body. Like all other allopathic drugs, it comes with certain side effects, which include joint pain, cramps in muscle, weight gain/loss, hair loss, <i>etc</i>. The thyroid hormone, thyroxine, is known to mobilize fat in our body, including the ones from the hepatic system. An underactive thyroid may cause an accumulation of fat in the liver, leading to a fatty liver, which is clinically termed Non-Alcoholic Fatty Liver Disease (NAFLD). The correlation between hypothyroidism and NAFLD is now well-studied and recognized. As levothyroxine performs the functions of the missing thyroxine, it is anticipated, based on certain preliminary studies, that the drug helps to mobilize hepatic fat and thus may have a crucial role in mitigating the condition of NAFDL.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":"128-138"},"PeriodicalIF":3.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9482129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohammad Owais, Arun Kumar, Syed Misbahul Hasan, Kuldeep Singh, Iqbal Azad, Arshad Hussain, Suvaiv, Mohd Akil
{"title":"Quinoline Derivatives as Promising Scaffolds for Antitubercular Activity: A Comprehensive Review.","authors":"Mohammad Owais, Arun Kumar, Syed Misbahul Hasan, Kuldeep Singh, Iqbal Azad, Arshad Hussain, Suvaiv, Mohd Akil","doi":"10.2174/0113895575281039231218112953","DOIUrl":"10.2174/0113895575281039231218112953","url":null,"abstract":"<p><strong>Background: </strong>Heterocyclic compounds and their derivatives play a significant role in the design and development of novel quinoline drugs. Among the various pharmacologically active heterocyclic compounds, quinolines stand out as the most significant rings due to their broad pharmacological roles, specifically antitubercular activity, and their presence in plant-based compounds. Quinoline is also known as benzpyridine, benzopyridine, and 1-azanaphthalene. It has a benzene ring fused with a pyridine ring, and both rings share two carbon atoms. The importance of quinoline lies in its incorporation as a key component in various natural compounds found in medicinal plant families like <i>Fumariaceae, Berberidaceae, Rutaceae, Papavaraceae</i>, and others.</p><p><strong>Objective: </strong>This article is expected to have a significant impact on the advancement of effective antitubercular drugs. Through harnessing the potent activity of quinoline derivatives, the research aims to make valuable contributions to combating tuberculosis more efficiently and ultimately reducing the global burden of this infectious disease.</p><p><strong>Methods: </strong>Numerous nitrogen-containing heterocyclic compounds exhibit significant potential as antitubercular agents. These chemicals have fused aromatic nitrogen-heterocyclic nuclei that can change the number of electrons they have, which can change their chemical, physical, and biological properties. This versatility comes from their ability to bind with the receptors in multiple modes, a critical aspect of drug pharmacological screening. Among these compounds, quinoline stands out as it incorporates a stable fusion of a benzene ring with a pyridine nucleus. Quinolines have demonstrated a diverse range of pharmacological activities, including but not limited to anti-tubercular, anti-tumor, anticoagulant, anti-inflammatory, antioxidant, antiviral, antimalarial, anti-HIV, and antimicrobial effects.</p><p><strong>Results: </strong>Some molecules, such as lone-paired nitrogen species, include pyrrole, pyrazole, and quinoline. These molecules contain nitrogen and take part in metabolic reactions with other molecules inside the cell. However, an excessive accumulation of reactive nitrogen species can lead to cytotoxicity, resulting in damage to essential biological macromolecules. Among these compounds, quinoline stands out as the oldest and most effective one, exhibiting a wide range of significant properties such as antitubercular, antimicrobial, anti-inflammatory, antioxidant, analgesic, and anticonvulsant activities. Notably, naturally occurring quinoline compounds, such as quinine, have proven to be potent antimalarial drugs.</p><p><strong>Conclusion: </strong>This review highlights quinoline derivatives' antitubercular potential, emphasizing recent research advancements. Utilizing IC<sub>50</sub> values, the study emphasizes the efficacy of various quinoline substitutions, hybrids, and electron-wi","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":"1238-1251"},"PeriodicalIF":3.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139377960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Roles of Accelerated Molecular Dynamics Simulations in Predictions of Binding Kinetic Parameters.","authors":"Jianzhong Chen, Wei Wang, Haibo Sun, Weikai He","doi":"10.2174/0113895575252165231122095555","DOIUrl":"10.2174/0113895575252165231122095555","url":null,"abstract":"<p><p>Rational predictions on binding kinetics parameters of drugs to targets play significant roles in future drug designs. Full conformational samplings of targets are requisite for accurate predictions of binding kinetic parameters. In this review, we mainly focus on the applications of enhanced sampling technologies in calculations of binding kinetics parameters and residence time of drugs. The methods involved in molecular dynamics simulations are applied to not only probe conformational changes of targets but also reveal calculations of residence time that is significant for drug efficiency. For this review, special attention are paid to accelerated molecular dynamics (aMD) and Gaussian aMD (GaMD) simulations that have been adopted to predict the association or disassociation rate constant. We also expect that this review can provide useful information for future drug design.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":"1323-1333"},"PeriodicalIF":3.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139542733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Targeting Ferroptosis: A Novel Strategy for the Treatment of Atherosclerosis.","authors":"Yifan Zhang, Chengshi Jiang, Ning Meng","doi":"10.2174/0113895575273164231130070920","DOIUrl":"10.2174/0113895575273164231130070920","url":null,"abstract":"<p><p>Since ferroptosis was reported in 2012, its application prospects in various diseases have been widely considered, initially as a treatment direction for tumors. Recent studies have shown that ferroptosis is closely related to the occurrence and development of atherosclerosis. The primary mechanism is to affect the occurrence and development of atherosclerosis through intracellular iron homeostasis, ROS and lipid peroxide production and metabolism, and a variety of intracellular signaling pathways. Inhibition of ferroptosis is effective in inhibiting the development of atherosclerosis, and it can bring a new direction for treating atherosclerosis. In this review, we discuss the mechanism of ferroptosis and focus on the relationship between ferroptosis and atherosclerosis, summarize the different types of ferroptosis inhibitors that have been widely studied, and discuss some issues worthy of attention in the treatment of atherosclerosis by targeting ferroptosis.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":"1262-1276"},"PeriodicalIF":3.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139570787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Targeting STAT3 Enzyme for Cancer Treatment.","authors":"Sowmiya Arun, Praveen Kumar Patel, Kaviarasan Lakshmanan, Kalirajan Rajangopal, Gomathi Swaminathan, Gowramma Byran","doi":"10.2174/0113895575254012231024062619","DOIUrl":"10.2174/0113895575254012231024062619","url":null,"abstract":"<p><p>A category of cytoplasmic transcription factors called STATs mediates intracellular signaling, which is frequently generated at receptors on cell surfaces and subsequently sent to the nucleus. STAT3 is a member of a responsible for a variety of human tumor forms, including lymphomas, hematological malignancies, leukemias, multiple myeloma and several solid tumor types. Numerous investigations have demonstrated constitutive STAT3 activation lead to cancer development such as breast, head and neck, lung, colorectal, ovarian, gastric, hepatocellular, and prostate cancers. It's possible to get a hold of the book here. Tumor cells undergo apoptosis when STAT3 activation is suppressed. This review highlights the STAT3 activation and inhibition which can be used for further studies.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":"1252-1261"},"PeriodicalIF":3.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139651108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Application of MD Simulation to Lead Identification, Vaccine Design, and Structural Studies in Combat against Leishmaniasis - A Review.","authors":"Saravanan Vijayakumar, Lukkani Laxman Kumar, Subhomoi Borkotoky, Ayaluru Murali","doi":"10.2174/1389557523666230901105231","DOIUrl":"10.2174/1389557523666230901105231","url":null,"abstract":"<p><p>Drug discovery, vaccine design, and protein interaction studies are rapidly moving toward the routine use of molecular dynamics simulations (MDS) and related methods. As a result of MDS, it is possible to gain insights into the dynamics and function of identified drug targets, antibody-antigen interactions, potential vaccine candidates, intrinsically disordered proteins, and essential proteins. The MDS appears to be used in all possible ways in combating diseases such as cancer, however, it has not been well documented as to how effectively it is applied to infectious diseases such as Leishmaniasis. As a result, this review aims to survey the application of MDS in combating leishmaniasis. We have systematically collected articles that illustrate the implementation of MDS in drug discovery, vaccine development, and structural studies related to Leishmaniasis. Of all the articles reviewed, we identified that only a limited number of studies focused on the development of vaccines against Leishmaniasis through MDS. Also, the PCA and FEL studies were not carried out in most of the studies. These two were globally accepted utilities to understand the conformational changes and hence it is recommended that this analysis should be taken up in similar approaches in the future.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":"1089-1111"},"PeriodicalIF":3.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10553357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recent Advancement in Bioactive Chalcone Hybrids as Potential Antimicrobial Agents in Medicinal Chemistry.","authors":"Anand Maurya, Alka Agrawal","doi":"10.2174/1389557523666230727102606","DOIUrl":"10.2174/1389557523666230727102606","url":null,"abstract":"<p><p>Chalcones are flavonoid-related aromatic ketones and enones generated from plants. The chalcones have a wide range of biological activities, such as anti-tumor, calming, and antimicrobial activities. In the present review, we have focused on the recently published original research articles on chalcones as a unique antibacterial framework in medicinal chemistry. Chalcones are structurally diverse moieties and can be split into simple and hybrid chalcones, with both having core pharmacophore 1,3-diaryl-2-propen-1-one. Chalcones are isolated from natural sources and also synthesized by using various methods. Their structure-activity relationship, mechanisms, and list of patents are also summarized in this paper. This review article outlines the currently published antimicrobial chalcone hybrids and suggests that chalcone derivatives may be potential antimicrobial agents in the future.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":"176-195"},"PeriodicalIF":3.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9879269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recent Development of DNA Gyrase Inhibitors: An Update.","authors":"Poonam Piplani, Ajay Kumar, Akanksha Kulshreshtha, Tamanna Vohra, Vritti Piplani","doi":"10.2174/0113895575264264230921080718","DOIUrl":"10.2174/0113895575264264230921080718","url":null,"abstract":"<p><p>Antibiotic or antimicrobial resistance is an urgent global public health threat that occurs when bacterial or fungal infections do not respond to the drug regimen designed to treat these infections. As a result, these microbes are not evaded and continue to grow. Antibiotic resistance against natural and already-known antibiotics like Ciprofloxacin and Novobiocin can be overcome by developing an agent that can act in different ways. The success of agents like Zodiflodacin and Zenoxacin in clinical trials against DNA gyrase inhibitors that act on different sites of DNA gyrase has resulted in further exploration of this target. However, due to the emergence of bacterial resistance against these targets, there is a great need to design agents that can overcome this resistance and act with greater efficacy. This review provides information on the synthetic and natural DNA gyrase inhibitors that have been developed recently and their promising potential for combating antimicrobial resistance. The review also presents information on molecules that are in clinical trials and their current status. It also analysed the SAR studies and mechanisms of action of enlisted agents.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":"1001-1030"},"PeriodicalIF":3.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71424898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shuxian Liu, Minghao Xu, Lei Zhong, Xiangmin Tong, Suying Qian
{"title":"Recent Advances in Nanobiotechnology for the Treatment of Non-Hodgkin's Lymphoma.","authors":"Shuxian Liu, Minghao Xu, Lei Zhong, Xiangmin Tong, Suying Qian","doi":"10.2174/1389557523666230915103121","DOIUrl":"10.2174/1389557523666230915103121","url":null,"abstract":"<p><p>Lymphoma is the eighth most common type of cancer worldwide. Currently, lymphoma is mainly classified into two main groups: Hodgkin's lymphoma (HL) and non-Hodgkin's lymphoma (NHL), with NHL accounting for 80% to 90% of the cases. NHL is primarily divided into B, T, and natural killer (NK) cell lymphoma. Nanotechnology is developing rapidly and has made significant contributions to the field of medicine. This review summarizes the advancements of nanobiotechnology in recent years and its applications in the treatment of NHL, especially in diffuse large B cell lymphoma (DLBCL), primary central nervous system lymphoma (PCNSL), and follicular lymphoma (FL). The technologies discussed include clinical imaging, targeted drug delivery, photodynamic therapy (PDT), and thermodynamic therapy (TDT) for lymphoma. This review aims to provide a better understanding of the use of nanotechnology in the treatment of non-Hodgkin's lymphoma.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":"895-907"},"PeriodicalIF":3.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41126653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}