Metabolomics最新文献

筛选
英文 中文
BW312 Hordeum vulgare semi-dwarf mutant exhibits a shifted metabolic profile towards pathogen resistance. BW312 Hordeum vulgare 半矮小突变体表现出抗病原体转移的代谢特征。
IF 3.5 3区 医学
Metabolomics Pub Date : 2024-10-22 DOI: 10.1007/s11306-024-02174-3
Richard Rigo, Julie Zumsteg, Hubert Schaller, Thierry Barchietto, Sergej Buchet, Dimitri Heintz, Claire Villette
{"title":"BW312 Hordeum vulgare semi-dwarf mutant exhibits a shifted metabolic profile towards pathogen resistance.","authors":"Richard Rigo, Julie Zumsteg, Hubert Schaller, Thierry Barchietto, Sergej Buchet, Dimitri Heintz, Claire Villette","doi":"10.1007/s11306-024-02174-3","DOIUrl":"10.1007/s11306-024-02174-3","url":null,"abstract":"<p><strong>Introduction: </strong>Plant hormonal mutants, which do not produce or are insensitive to hormones, are often affected in their growth and development, but other metabolic rearrangements might be involved. A trade-off between growth and stress response is necessary for the plant survival.</p><p><strong>Objectives: </strong>Here, we explore the metabolic profile and the pathogen resistance of a brassinosteroid-insensitive Hordeum vulgare L. semi-dwarf mutant, BW312.</p><p><strong>Methods: </strong>We investigate BW312 metabolism through a chemical enrichment analysis, confirming a shifted metabolic profile towards pathogen resistance. The effective pathogen resistance of the mutant was tested in presence of Pyrenophora teres and Fusarium graminearum.</p><p><strong>Results: </strong>Four compound families were increased in the mutant (pyrrolidines, basic amino acids, alkaloids, monounsaturated fatty acids), while two compound families were decreased (pyrrolidinones, anthocyanins). Dipeptides were also altered (increased and decreased). BW312 displayed a better resistance to Pyrenophora teres in the earliest stage of infection with a 21.5% decrease of the lesion length 10 days after infection. BW312 also exhibited a reduced lesion length (43.3%) and a reduced browning of the lesions (55.5%) when exposed to Fusarium graminearum at the seedling stage.</p><p><strong>Conclusion: </strong>The observed metabolomic shift strongly suggests that the BW312 semi-dwarf mutant is in a primed state, resulting in a standby state of alertness to pathogens.</p>","PeriodicalId":18506,"journal":{"name":"Metabolomics","volume":"20 6","pages":"119"},"PeriodicalIF":3.5,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142503632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Serum metabolite signature of the modified Mediterranean-DASH intervention for neurodegenerative delay (MIND) diet. 改良地中海-DASH 神经退行性延迟干预饮食(MIND)的血清代谢物特征。
IF 3.5 3区 医学
Metabolomics Pub Date : 2024-10-21 DOI: 10.1007/s11306-024-02184-1
Jiaqi Yang, Lauren Bernard, Kari E Wong, Bing Yu, Lyn M Steffen, Valerie K Sullivan, Casey M Rebholz
{"title":"Serum metabolite signature of the modified Mediterranean-DASH intervention for neurodegenerative delay (MIND) diet.","authors":"Jiaqi Yang, Lauren Bernard, Kari E Wong, Bing Yu, Lyn M Steffen, Valerie K Sullivan, Casey M Rebholz","doi":"10.1007/s11306-024-02184-1","DOIUrl":"10.1007/s11306-024-02184-1","url":null,"abstract":"<p><strong>Introduction: </strong>There is a lack of biomarkers of clinically important diets, such as the Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) diet.</p><p><strong>Objectives: </strong>Our study explored serum metabolites associated with adherence to the MIND diet.</p><p><strong>Methods: </strong>In 3,908 Atherosclerosis Risk in Communities (ARIC) study participants, we calculated a modified MIND diet score based on a 66-item self-reported food frequency questionnaire (FFQ). The modified score did not include berries and olive oil, as these items were not assessed in the FFQ. We used multivariable linear regression models in 2 subgroups of ARIC study participants and meta-analyzed results using fixed effects regression to identify significant metabolites after Bonferroni correction. We also examined associations between these metabolites and food components of the modified MIND diet. C-statistics evaluated the prediction of high modified MIND diet adherence using significant metabolites beyond participant characteristics.</p><p><strong>Results: </strong>Of 360 metabolites analyzed, 27 metabolites (15 positive, 12 negative) were significantly associated with the modified MIND diet score (lipids, n = 13; amino acids, n = 5; xenobiotics, n = 3; cofactors and vitamins, n = 3; carbohydrates n = 2; nucleotide n = 1). The top 4 metabolites that improved the prediction of high dietary adherence to the modified MIND diet were 7-methylxanthine, theobromine, docosahexaenoate (DHA), and 3-carboxy-4-methyl-5-propyl-2-furanpropanoate (CMPF).</p><p><strong>Conclusion: </strong>Twenty-seven metabolomic markers were correlated with the modified MIND diet. The biomarkers, if further validated, could be useful to objectively assess adherence to the MIND diet.</p>","PeriodicalId":18506,"journal":{"name":"Metabolomics","volume":"20 6","pages":"118"},"PeriodicalIF":3.5,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142469740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dopaminergic neuron metabolism: relevance for understanding Parkinson's disease. 多巴胺能神经元代谢:了解帕金森病的相关性。
IF 3.5 3区 医学
Metabolomics Pub Date : 2024-10-13 DOI: 10.1007/s11306-024-02181-4
Xóchitl Flores-Ponce, Iván Velasco
{"title":"Dopaminergic neuron metabolism: relevance for understanding Parkinson's disease.","authors":"Xóchitl Flores-Ponce, Iván Velasco","doi":"10.1007/s11306-024-02181-4","DOIUrl":"10.1007/s11306-024-02181-4","url":null,"abstract":"<p><strong>Background: </strong>Dopaminergic neurons from the substantia nigra pars compacta (SNc) have a higher susceptibility to aging-related degeneration, compared to midbrain dopaminergic cells present in the ventral tegmental area (VTA); the death of dopamine neurons in the SNc results in Parkinson´s disease (PD). In addition to increased loss by aging, dopaminergic neurons from the SNc are more prone to cell death when exposed to genetic or environmental factors, that either interfere with mitochondrial function, or cause an increase of oxidative stress. The oxidation of dopamine is a contributing source of reactive oxygen species (ROS), but this production is not enough to explain the differences in susceptibility to degeneration between SNc and VTA neurons.</p><p><strong>Aim of review: </strong>In this review we aim to highlight the intrinsic differences between SNc and VTA dopamine neurons, in terms of gene expression, calcium oscillations, bioenergetics, and ROS responses. Also, to describe the changes in the pentose phosphate pathway and the induction of apoptosis in SNc neurons during aging, as related to the development of PD.</p><p><strong>Key scientific concepts of review: </strong>Recent work showed that neurons from the SNc possess intrinsic characteristics that result in metabolic differences, related to their intricate morphology, that render them more susceptible to degeneration. In particular, these neurons have an elevated basal energy metabolism, that is required to fulfill the demands of the constant firing of action potentials, but at the same time, is associated to higher ROS production, compared to VTA cells. Finally, we discuss how mutations related to PD affect metabolic pathways, and the related mechanisms, as revealed by metabolomics.</p>","PeriodicalId":18506,"journal":{"name":"Metabolomics","volume":"20 6","pages":"116"},"PeriodicalIF":3.5,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11471710/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142469737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
EMBL-MCF 2.0: an LC-MS/MS method and corresponding library for high-confidence targeted and untargeted metabolomics using low-adsorption HILIC chromatography. EMBL-MCF 2.0:一种利用低吸附 HILIC 色谱进行高可信度靶向和非靶向代谢组学研究的 LC-MS/MS 方法和相应文库。
IF 3.5 3区 医学
Metabolomics Pub Date : 2024-10-13 DOI: 10.1007/s11306-024-02176-1
Svitlana Dekina, Theodore Alexandrov, Bernhard Drotleff
{"title":"EMBL-MCF 2.0: an LC-MS/MS method and corresponding library for high-confidence targeted and untargeted metabolomics using low-adsorption HILIC chromatography.","authors":"Svitlana Dekina, Theodore Alexandrov, Bernhard Drotleff","doi":"10.1007/s11306-024-02176-1","DOIUrl":"10.1007/s11306-024-02176-1","url":null,"abstract":"<p><strong>Introduction: </strong>Over the past two decades, liquid chromatography-mass spectrometry (LC-MS)-based metabolomics has experienced significant growth, playing a crucial role in various scientific disciplines. However, despite these advance-ments, metabolite identification (MetID) remains a significant challenge. To address this, stringent MetID requirements were established, emphasizing the necessity of aligning experimental data with authentic reference standards using multiple criteria. Establishing dependable methods and corresponding libraries is crucial for instilling confidence in MetID and driving further progress in metabolomics.</p><p><strong>Objective: </strong>The EMBL-MCF 2.0 LC-MS/MS method and public library was designed to facilitate both targeted and untargeted metabolomics with exclusive focus on endogenous, polar metabolites, which are known to be challenging to analyze due to their hydrophilic nature. By accompanying spectral data with robust retention times obtained from authentic standards and low-adsorption chromatography, high confidence MetID is achieved and accessible to the metabolomics community.</p><p><strong>Methods: </strong>The library is built on hydrophilic interaction liquid chromatography (HILIC) and state-of-the-art low adsorption LC hardware. Both high-resolution tandem mass spectra and manually optimized multiple reaction monitoring (MRM) transitions were acquired on an Orbitrap Exploris 240 and a QTRAP 6500+, respectively.</p><p><strong>Results: </strong>Implementation of biocompatible HILIC has facilitated the separation of isomeric metabolites with significant enhancements in both selectivity and sensitivity. The resulting library comprises a diverse collection of more than 250 biologically relevant metabolites. The methodology was successfully applied to investigate a variety of biological matrices, with exemplary findings showcased using murine plasma samples.</p><p><strong>Conclusions: </strong>Our work has resulted in the development of the EMBL-MCF 2.0 library, a powerful resource for sensitive metabolomics analyses and high-confidence MetID. The library is freely accessible and available in the universal .msp file format under the CC-BY 4.0 license: mona.fiehnlab.ucdavis.edu https://mona.fiehnlab.ucdavis.edu/spectra/browse?query=exists(tags.text:%27EMBL-MCF_2.0_HRMS_Library%27) , EMBL-MCF 2.0 HRMS https://www.embl.org/groups/metabolomics/instrumentation-and-software/#MCF-library .</p>","PeriodicalId":18506,"journal":{"name":"Metabolomics","volume":"20 6","pages":"114"},"PeriodicalIF":3.5,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11471713/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142469738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nutritional deuterium depletion and health: a scoping review. 营养氘耗竭与健康:范围界定综述。
IF 3.5 3区 医学
Metabolomics Pub Date : 2024-10-13 DOI: 10.1007/s11306-024-02173-4
Nicole Korchinsky, Anne M Davis, László G Boros
{"title":"Nutritional deuterium depletion and health: a scoping review.","authors":"Nicole Korchinsky, Anne M Davis, László G Boros","doi":"10.1007/s11306-024-02173-4","DOIUrl":"10.1007/s11306-024-02173-4","url":null,"abstract":"<p><strong>Introduction: </strong>Large variations in fatty and amino acid natural <sup>2</sup>H/<sup>1</sup>H ratios in reference with solvent water point to the active involvement of compartmental, inter- and intramolecular deuterium disequilibrium in adaptive biology. Yet, the human deutenome is an untapped area of energy metabolism and health in humans.</p><p><strong>Objectives: </strong>The purpose of this scoping review is to examine health effects through deuterium homeostasis using deuterium-depleted water and/or a deuterium-depleted diet. We also aim to reveal health effects of nutritional, metabolic and exercise ketosis, i.e. complete mitochondrial fatty acid oxidation with the production of deuterium depleted (deupleted) metabolic water.</p><p><strong>Methods: </strong>A protocol process approach was used to retrieve current research in deuterium depletion according to the preferred reporting items protocol for systematic reviews and meta-analyses, extension for scoping reviews with checklist (PRISMA-ScR).</p><p><strong>Results: </strong>Fifteen research articles were used. All retrieved articles were heterogenous in nature and additional themes did not evolve. Deuterium depletion was found to have beneficial health effects in the following conditions: cancer prevention, cancer treatment, depression, diabetes, long-term memory, anti-aging, and sports performance. Deutenomics is actively pursued in drug research and there are biomarker roles attributed to large natural variations with adaptive significance in biology.</p><p><strong>Conclusion: </strong>Even with limited data, consistent deuterium depletion can be seen across all conditions reviewed. More randomized control trials are recommended to confirm cause and effect for translationally and clinically informed integrative nutrition-based medical interventions.</p>","PeriodicalId":18506,"journal":{"name":"Metabolomics","volume":"20 6","pages":"117"},"PeriodicalIF":3.5,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11471703/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142469739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Special collection devoted to the VIII "metabolomics circle" conference organized by the Polish metabolomics society. 波兰代谢组学学会组织的第八届 "代谢组学圈 "会议特辑。
IF 3.5 3区 医学
Metabolomics Pub Date : 2024-10-13 DOI: 10.1007/s11306-024-02183-2
I Stanimirova, M Daszykowski
{"title":"Special collection devoted to the VIII \"metabolomics circle\" conference organized by the Polish metabolomics society.","authors":"I Stanimirova, M Daszykowski","doi":"10.1007/s11306-024-02183-2","DOIUrl":"10.1007/s11306-024-02183-2","url":null,"abstract":"","PeriodicalId":18506,"journal":{"name":"Metabolomics","volume":"20 6","pages":"115"},"PeriodicalIF":3.5,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11471698/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142469741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The human volatilome meets cancer diagnostics: past, present, and future of noninvasive applications. 人体挥发物与癌症诊断:无创应用的过去、现在和未来。
IF 3.5 3区 医学
Metabolomics Pub Date : 2024-10-07 DOI: 10.1007/s11306-024-02180-5
João Marcos G Barbosa, Nelson R Antoniosi Filho
{"title":"The human volatilome meets cancer diagnostics: past, present, and future of noninvasive applications.","authors":"João Marcos G Barbosa, Nelson R Antoniosi Filho","doi":"10.1007/s11306-024-02180-5","DOIUrl":"10.1007/s11306-024-02180-5","url":null,"abstract":"<p><strong>Background: </strong>Cancer is a significant public health problem, causing dozens of millions of deaths annually. New cancer screening programs are urgently needed for early cancer detection, as this approach can improve treatment outcomes and increase patient survival. The search for affordable, noninvasive, and highly accurate cancer detection methods revealed a valuable source of tumor-derived metabolites in the human metabolome through the exploration of volatile organic compounds (VOCs) in noninvasive biofluids.</p><p><strong>Aim of review: </strong>This review discusses volatilomics-based approaches for cancer detection using noninvasive biomatrices (breath, saliva, skin secretions, urine, feces, and earwax). We presented the historical background, the latest approaches, and the required stages for clinical validation of volatilomics-based methods, which are still lacking in terms of making noninvasive methods available and widespread to the population. Furthermore, insights into the usefulness and challenges of volatilomics in clinical implementation steps for each biofluid are highlighted.</p><p><strong>Key scientific concepts of review: </strong>We outline the methodologies for using noninvasive biomatrices with up-and-coming clinical applications in cancer diagnostics. Several challenges and advantages associated with the use of each biomatrix are discussed, aiming at encouraging the scientific community to strengthen efforts toward the necessary steps to speed up the clinical translation of volatile-based cancer detection methods, as well as discussing in favor of (i) hybrid applications (i.e., using more than one biomatrix) to describe metabolite modulations that can be \"cancer volatile fingerprints\" and (ii) in multi-omics approaches integrating genomics, transcriptomics, and proteomics into the volatilomic data, which might be a breakthrough for diagnostic purposes, onco-pathway assessment, and biomarker validations.</p>","PeriodicalId":18506,"journal":{"name":"Metabolomics","volume":"20 5","pages":"113"},"PeriodicalIF":3.5,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142391719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Infants with biliary atresia exhibit an altered amino acid profile in their newborn screening. 患有胆道闭锁的婴儿在新生儿筛查中表现出氨基酸谱的改变。
IF 3.5 3区 医学
Metabolomics Pub Date : 2024-10-05 DOI: 10.1007/s11306-024-02175-2
Marie Uecker, Cornelia Prehn, Nils Janzen, Jerzy Adamski, Gertrud Vieten, Claus Petersen, Joachim F Kuebler, Omid Madadi-Sanjani, Christian Klemann
{"title":"Infants with biliary atresia exhibit an altered amino acid profile in their newborn screening.","authors":"Marie Uecker, Cornelia Prehn, Nils Janzen, Jerzy Adamski, Gertrud Vieten, Claus Petersen, Joachim F Kuebler, Omid Madadi-Sanjani, Christian Klemann","doi":"10.1007/s11306-024-02175-2","DOIUrl":"10.1007/s11306-024-02175-2","url":null,"abstract":"<p><strong>Introduction: </strong>Biliary atresia (BA) is a rare progressive neonatal cholangiopathy with unknown pathophysiology and time of onset. Newborn Screening (NBS) in Germany is routinely performed in the first days of life to identify rare congenital diseases utilizing dried blood spot (DBS) card analyses. Infants with biliary atresia (BA) are known to have altered amino acid profiles (AAP) at the time point of diagnosis, but it is unclear whether these alterations are present at the time point of NBS.</p><p><strong>Objectives: </strong>We aimed to analyze amino acid profiles in NBS-DBS of infants with Biliary Atresia.</p><p><strong>Methods: </strong>Original NBS-DBS cards of 41 infants who were later on diagnosed with BA were retrospectively obtained. NBS-DBS cards from healthy newborns (n = 40) served as controls. In some BA infants (n = 14) a second DBS card was obtained at time of Kasai surgery. AAP in DBS cards were analyzed by targeted metabolomics.</p><p><strong>Results: </strong>DBS metabolomics in the NBS of at that time point seemingly healthy infants later diagnosed with BA revealed significantly higher levels of Methionine (14.6 ± 8.6 μmol/l), Histidine (23.5 ± 50.3 μmol/l), Threonine (123.9 ± 72.8 μmol/l) and Arginine (14.1 ± 11.8 μmol/l) compared to healthy controls (Met: 8.1 ± 2.6 μmol/l, His: 18.6 ± 10.1 μmol/l, Thr: 98.1 ± 34.3 μmol/l, Arg: 9.3 ± 6.6 μmol/l). Methionine, Arginine and Histidine showed a further increase at time point of Kasai procedure. No correlation between amino acid levels and clinical course was observed.</p><p><strong>Conclusion: </strong>Our data demonstrate that BA patients exhibit an altered AAP within 72 h after birth, long before the infants become symptomatic. This supports the theory of a prenatal onset of the disease and, thus, the possibility of developing a sensitive and specific NBS. Methionine might be particularly relevant due to its involvement in glutathione metabolism. Further investigation of AAP in BA may help in understanding the underlying pathophysiology.</p>","PeriodicalId":18506,"journal":{"name":"Metabolomics","volume":"20 5","pages":"109"},"PeriodicalIF":3.5,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11455667/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142378080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Combination of low glucose and SCD1 inhibition impairs cancer metabolic plasticity and growth in MCF-7 cancer cells: a comprehensive metabolomic and lipidomic analysis. 低糖与 SCD1 抑制相结合损害 MCF-7 癌细胞的癌症代谢可塑性和生长:代谢组学和脂质组学综合分析。
IF 3.5 3区 医学
Metabolomics Pub Date : 2024-10-05 DOI: 10.1007/s11306-024-02179-y
Wentao Zhu, John A Lusk, Vadim Pascua, Danijel Djukovic, Daniel Raftery
{"title":"Combination of low glucose and SCD1 inhibition impairs cancer metabolic plasticity and growth in MCF-7 cancer cells: a comprehensive metabolomic and lipidomic analysis.","authors":"Wentao Zhu, John A Lusk, Vadim Pascua, Danijel Djukovic, Daniel Raftery","doi":"10.1007/s11306-024-02179-y","DOIUrl":"10.1007/s11306-024-02179-y","url":null,"abstract":"<p><strong>Background: </strong>Cancer cells exhibit remarkable metabolic plasticity, enabling them to adapt to fluctuating nutrient conditions. This study investigates the impact of a combination of low glucose levels and inhibition of stearoyl-CoA desaturase 1 (SCD1) using A939572 on cancer metabolic plasticity and growth.</p><p><strong>Methods: </strong>A comprehensive metabolomic and lipidomic analysis was conducted to unravel the intricate changes in cellular metabolites and lipids. MCF-7 cells were subjected to low glucose conditions, and SCD1 was inhibited using A939572. The resulting alterations in metabolic pathways and lipid profiles were explored to elucidate the synergistic effects on cancer cell physiology.</p><p><strong>Results: </strong>The combination of low glucose and A939572-induced SCD1 inhibition significantly impaired cancer cell metabolic plasticity. Metabolomic analysis highlighted shifts in key glycolytic and amino acid pathways, indicating the cells' struggle to adapt to restricted glucose availability. Lipidomic profiling revealed alterations in lipid composition, implying disruptions in membrane integrity and signaling cascades.</p><p><strong>Conclusion: </strong>Our findings underscore the critical roles of glucose availability and SCD1 activity in sustaining cancer metabolic plasticity and growth. Simultaneously targeting these pathways emerges as a promising strategy to impede cancer progression. The comprehensive metabolomic and lipidomic analysis provides a detailed roadmap of molecular alterations induced by this combination treatment, that may help identify potential therapeutic targets.</p>","PeriodicalId":18506,"journal":{"name":"Metabolomics","volume":"20 5","pages":"112"},"PeriodicalIF":3.5,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142378065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the circulating metabolome of sepsis: metabolomic and lipidomic profiles sampled in the ambulance. 探索败血症的循环代谢组:在救护车上采样的代谢组和脂质组图谱。
IF 3.5 3区 医学
Metabolomics Pub Date : 2024-10-05 DOI: 10.1007/s11306-024-02172-5
Samira Salihovic, Daniel Eklund, Robert Kruse, Ulrika Wallgren, Tuulia Hyötyläinen, Eva Särndahl, Lisa Kurland
{"title":"Exploring the circulating metabolome of sepsis: metabolomic and lipidomic profiles sampled in the ambulance.","authors":"Samira Salihovic, Daniel Eklund, Robert Kruse, Ulrika Wallgren, Tuulia Hyötyläinen, Eva Särndahl, Lisa Kurland","doi":"10.1007/s11306-024-02172-5","DOIUrl":"10.1007/s11306-024-02172-5","url":null,"abstract":"<p><strong>Background: </strong>Sepsis is defined as a dysfunctional host response to infection. The diverse clinical presentations of sepsis pose diagnostic challenges and there is a demand for enhanced diagnostic markers for sepsis as well as an understanding of the underlying pathological mechanisms involved in sepsis. From this perspective, metabolomics has emerged as a potentially valuable tool for aiding in the early identification of sepsis that could highlight key metabolic pathways and underlying pathological mechanisms.</p><p><strong>Objective: </strong>The aim of this investigation is to explore the early metabolomic and lipidomic profiles in a prospective cohort where plasma samples (n = 138) were obtained during ambulance transport among patients with infection according to clinical judgement who subsequently developed sepsis, patients who developed non-septic infection, and symptomatic controls without an infection.</p><p><strong>Methods: </strong>Multiplatform metabolomics and lipidomics were performed using UHPLC-MS/MS and UHPLC-QTOFMS. Uni- and multivariable analysis were used to identify metabolite profiles in sepsis vs symptomatic control and sepsis vs non-septic infection.</p><p><strong>Results: </strong>Univariable analysis disclosed that out of the 457 annotated metabolites measured across three different platforms, 23 polar, 27 semipolar metabolites and 133 molecular lipids exhibited significant differences between patients who developed sepsis and symptomatic controls following correction for multiple testing. Furthermore, 84 metabolites remained significantly different between sepsis and symptomatic controls following adjustment for age, sex, and Charlson comorbidity score. Notably, no significant differences were identified in metabolites levels when comparing patients with sepsis and non-septic infection in univariable and multivariable analyses.</p><p><strong>Conclusion: </strong>Overall, we found that the metabolome, including the lipidome, was decreased in patients experiencing infection and sepsis, with no significant differences between the two conditions. This finding indicates that the observed metabolic profiles are shared between both infection and sepsis, rather than being exclusive to sepsis alone.</p>","PeriodicalId":18506,"journal":{"name":"Metabolomics","volume":"20 5","pages":"111"},"PeriodicalIF":3.5,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11455889/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142378079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信