Differential metabolic profiles by Hispanic ethnicity among male Tucson firefighters.

IF 3.5 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM
Tuo Liu, Melissa A Furlong, Justin M Snider, Malak M Tfaily, Christian Itson, Shawn C Beitel, John J Gulotta, Krishna Parsawar, Kristen Keck, James Galligan, Douglas I Walker, Jaclyn M Goodrich, Jefferey L Burgess
{"title":"Differential metabolic profiles by Hispanic ethnicity among male Tucson firefighters.","authors":"Tuo Liu, Melissa A Furlong, Justin M Snider, Malak M Tfaily, Christian Itson, Shawn C Beitel, John J Gulotta, Krishna Parsawar, Kristen Keck, James Galligan, Douglas I Walker, Jaclyn M Goodrich, Jefferey L Burgess","doi":"10.1007/s11306-024-02198-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Firefighters face regular exposure to known and probable human carcinogens, such as polycyclic aromatic hydrocarbons (PAHs), benzene, and formaldehyde, leading to an increased risk of various cancers compared to the general population. Hispanic and black firefighters are at increased risk of additional cancers not elevated in non-Hispanic white firefighters, yet biological pathways underlying these differences are unknown.</p><p><strong>Objectives: </strong>The study objectives were to evaluate differences in the urinary metabolome between Hispanic and non-Hispanic firefighters, pre-and post-fireground exposure.</p><p><strong>Methods: </strong>To investigate the metabolic patterns, we employed a comprehensive metabolomics pipeline that leveraged liquid chromatography coupled with high-resolution mass spectrometry. We applied linear mixed effects regression to identify the differential metabolites at an FDR < 0.05 among 19 Hispanic and 81 non-Hispanic firefighters. We also performed overrepresentation analysis using Mummichog to identify enriched pathways at FDR < 0.05.</p><p><strong>Results: </strong>Out of 175 features in HILIC(-) mode and 1847 features in RP(+) mode, we found 26 and 276 differential urinary features, respectively, when comparing Hispanic and non-Hispanic firefighters. We noted pathway enrichment in tryptophan and galactose metabolism. However, post-exposure, we did not observe differences in the metabolomic response by ethnicity despite differing fireground exposures.</p><p><strong>Conclusion: </strong>Dysregulation in the tryptophan and galactose pathway is an important contributor to cancer risks and may explain the increased cancer risk among Hispanic firefighters.</p>","PeriodicalId":18506,"journal":{"name":"Metabolomics","volume":"21 2","pages":"37"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11885328/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11306-024-02198-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Firefighters face regular exposure to known and probable human carcinogens, such as polycyclic aromatic hydrocarbons (PAHs), benzene, and formaldehyde, leading to an increased risk of various cancers compared to the general population. Hispanic and black firefighters are at increased risk of additional cancers not elevated in non-Hispanic white firefighters, yet biological pathways underlying these differences are unknown.

Objectives: The study objectives were to evaluate differences in the urinary metabolome between Hispanic and non-Hispanic firefighters, pre-and post-fireground exposure.

Methods: To investigate the metabolic patterns, we employed a comprehensive metabolomics pipeline that leveraged liquid chromatography coupled with high-resolution mass spectrometry. We applied linear mixed effects regression to identify the differential metabolites at an FDR < 0.05 among 19 Hispanic and 81 non-Hispanic firefighters. We also performed overrepresentation analysis using Mummichog to identify enriched pathways at FDR < 0.05.

Results: Out of 175 features in HILIC(-) mode and 1847 features in RP(+) mode, we found 26 and 276 differential urinary features, respectively, when comparing Hispanic and non-Hispanic firefighters. We noted pathway enrichment in tryptophan and galactose metabolism. However, post-exposure, we did not observe differences in the metabolomic response by ethnicity despite differing fireground exposures.

Conclusion: Dysregulation in the tryptophan and galactose pathway is an important contributor to cancer risks and may explain the increased cancer risk among Hispanic firefighters.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Metabolomics
Metabolomics 医学-内分泌学与代谢
CiteScore
6.60
自引率
2.80%
发文量
84
审稿时长
2 months
期刊介绍: Metabolomics publishes current research regarding the development of technology platforms for metabolomics. This includes, but is not limited to: metabolomic applications within man, including pre-clinical and clinical pharmacometabolomics for precision medicine metabolic profiling and fingerprinting metabolite target analysis metabolomic applications within animals, plants and microbes transcriptomics and proteomics in systems biology Metabolomics is an indispensable platform for researchers using new post-genomics approaches, to discover networks and interactions between metabolites, pharmaceuticals, SNPs, proteins and more. Its articles go beyond the genome and metabolome, by including original clinical study material together with big data from new emerging technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信