Vitamin B6 deficiency produces metabolic alterations in Drosophila.

IF 3.5 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM
Giulia Tesoriere, Eleonora Pilesi, Michele De Rosa, Ottavia Giampaoli, Adriano Patriarca, Mariangela Spagnoli, Federica Chiocciolini, Angela Tramonti, Roberto Contestabile, Fabio Sciubba, Fiammetta Vernì
{"title":"Vitamin B6 deficiency produces metabolic alterations in Drosophila.","authors":"Giulia Tesoriere, Eleonora Pilesi, Michele De Rosa, Ottavia Giampaoli, Adriano Patriarca, Mariangela Spagnoli, Federica Chiocciolini, Angela Tramonti, Roberto Contestabile, Fabio Sciubba, Fiammetta Vernì","doi":"10.1007/s11306-025-02236-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Pyridoxal 5'-phosphate (PLP), the biologically active form of vitamin B6 is involved in 4% of cellular enzymatic activities and its deficiency is responsible for or contributes to several human diseases. The study of underlying mechanisms is still in its infancy and requires suitable model organisms. In Drosophila the deficiency of vitamin B6 produces chromosome aberrations and hallmarks of human diseases including diabetes and cancer. However, the effects of vitamin B6 deficiency have never been examined at a metabolic level.</p><p><strong>Objectives: </strong>This study evaluates the metabolic changes in vitamin B6 deficient Drosophila larvae with the aim of validating flies as a suitable model for diseases associated to vitamin B6 deficiency.</p><p><strong>Methods: </strong>To induce vitamin B6 deficiency we fed Drosophila wild type larvae with 4-deoxypyridoxine (4DP), a PLP antagonist. By HPLC analysis we verified that the 4DP treatment was effective in inducing vitamin B6 deficiency. Using an NMR-based metabolomic approach we compared the metabolites in larval extracts from untreated and 4DP-fed larvae.</p><p><strong>Results: </strong>The NMR spectra analysis identified quantitative differences for sixteen metabolites out of forty, including branched chain and aromatic amino acids, glucose, and lipids, thus revealing interesting possible associations with the phenotypes showed by vitamin B6 deficient flies.</p><p><strong>Conclusions: </strong>Our results validate Drosophila as a suitable model to study in depth the molecular mechanisms underlying human diseases associated with vitamin B6 deficiency and confirmed that 4DP treatment is effective in inducing vitamin B6 deficiency.</p>","PeriodicalId":18506,"journal":{"name":"Metabolomics","volume":"21 2","pages":"42"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11930875/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11306-025-02236-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Pyridoxal 5'-phosphate (PLP), the biologically active form of vitamin B6 is involved in 4% of cellular enzymatic activities and its deficiency is responsible for or contributes to several human diseases. The study of underlying mechanisms is still in its infancy and requires suitable model organisms. In Drosophila the deficiency of vitamin B6 produces chromosome aberrations and hallmarks of human diseases including diabetes and cancer. However, the effects of vitamin B6 deficiency have never been examined at a metabolic level.

Objectives: This study evaluates the metabolic changes in vitamin B6 deficient Drosophila larvae with the aim of validating flies as a suitable model for diseases associated to vitamin B6 deficiency.

Methods: To induce vitamin B6 deficiency we fed Drosophila wild type larvae with 4-deoxypyridoxine (4DP), a PLP antagonist. By HPLC analysis we verified that the 4DP treatment was effective in inducing vitamin B6 deficiency. Using an NMR-based metabolomic approach we compared the metabolites in larval extracts from untreated and 4DP-fed larvae.

Results: The NMR spectra analysis identified quantitative differences for sixteen metabolites out of forty, including branched chain and aromatic amino acids, glucose, and lipids, thus revealing interesting possible associations with the phenotypes showed by vitamin B6 deficient flies.

Conclusions: Our results validate Drosophila as a suitable model to study in depth the molecular mechanisms underlying human diseases associated with vitamin B6 deficiency and confirmed that 4DP treatment is effective in inducing vitamin B6 deficiency.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Metabolomics
Metabolomics 医学-内分泌学与代谢
CiteScore
6.60
自引率
2.80%
发文量
84
审稿时长
2 months
期刊介绍: Metabolomics publishes current research regarding the development of technology platforms for metabolomics. This includes, but is not limited to: metabolomic applications within man, including pre-clinical and clinical pharmacometabolomics for precision medicine metabolic profiling and fingerprinting metabolite target analysis metabolomic applications within animals, plants and microbes transcriptomics and proteomics in systems biology Metabolomics is an indispensable platform for researchers using new post-genomics approaches, to discover networks and interactions between metabolites, pharmaceuticals, SNPs, proteins and more. Its articles go beyond the genome and metabolome, by including original clinical study material together with big data from new emerging technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信