Microbial Physiology最新文献

筛选
英文 中文
The Catabolic Network of Aromatoleum aromaticum EbN1T. 芳香菌EbN1T的分解代谢网络。
IF 0.1 4区 生物学
Microbial Physiology Pub Date : 2024-01-01 Epub Date: 2023-10-10 DOI: 10.1159/000534425
Patrick Becker, Daniel Wünsch, Lars Wöhlbrand, Meina Neumann-Schaal, Dietmar Schomburg, Ralf Rabus
{"title":"The Catabolic Network of Aromatoleum aromaticum EbN1T.","authors":"Patrick Becker, Daniel Wünsch, Lars Wöhlbrand, Meina Neumann-Schaal, Dietmar Schomburg, Ralf Rabus","doi":"10.1159/000534425","DOIUrl":"10.1159/000534425","url":null,"abstract":"<p><p>The denitrifying betaproteobacterium Aromatoleum aromaticum EbN1T is a facultative anaerobic degradation specialist and belongs to the environmental bacteria studied best on the proteogenomic level. This review summarizes the current state of knowledge about the anaerobic and aerobic degradation (to CO2) of 47 organic growth substrates (23 aromatic, 21 aliphatic, and 3 amino acids) as well as the modes of respiratory energy conservation (denitrification vs. O2-respiration). The constructed catabolic network is comprised of 256 genes, which occupy ∼7.5% of the coding regions of the genome. In total, 219 encoded proteins have been identified by differential proteomics, yielding a proteome coverage of ∼74% of the network. Its degradation section is composed of 31 peripheral and 4 central pathways, with several peripheral modules (e.g., for 4-ethylphenol, 2-phenylethylamine, indoleacetate, and phenylpropanoids) discovered only after the complete genome [Arch Microbiol. 2005 Jan;183(1):27-36] and a first proteomic survey [Proteomics. 2007 Jun;7(13):2222-39] of A. aromaticum EbN1T were reported. The activation of recalcitrant aromatic compounds involves a suite of biochemically intriguing reactions ranging from C-H-bond activation (e.g., ethylbenzene dehydrogenase) via carboxylation (e.g., acetophenone carboxylase) to oxidative deamination (e.g., benzylamine), reductive dearomatization (benzoyl-CoA), and epoxide-forming oxygenases (e.g., phenylacetyl-CoA). The peripheral reaction sequences are substrate-specifically induced, mediated by specific transcriptional regulators with in vivo response thresholds in the nanomolar range. While lipophilic substrates (e.g., phenolics) enter the cells via passive diffusion, polar ones require active uptake that is driven by specific transporters. Next to the protein repertoire for canonical complexes I-III, denitrification, and O2-respiration (low- and high-affinity oxidases), the genome encodes an Ndh-II, a tetrathionate reductase, two ETF:quinone oxidoreductases, and two Rnf-type complexes, broadening the electron transfer flexibility of the strain. Taken together, the detailed catabolic network presented here forms a solid basis for future systems biology-level studies with A. aromaticum EbN1T.</p>","PeriodicalId":18457,"journal":{"name":"Microbial Physiology","volume":" ","pages":"1-77"},"PeriodicalIF":0.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41204762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Screening and Characterization of a Chryseobacterium timonianum Strain with Aflatoxin B1 Removal Ability. 具有黄曲霉毒素 B1 清除能力的 Timonianum Chryseobacterium 菌株的筛选和特征描述。
IF 0.1 4区 生物学
Microbial Physiology Pub Date : 2024-01-01 Epub Date: 2024-08-13 DOI: 10.1159/000540803
Aniket Limaye, Je-Ruei Liu
{"title":"Screening and Characterization of a Chryseobacterium timonianum Strain with Aflatoxin B1 Removal Ability.","authors":"Aniket Limaye, Je-Ruei Liu","doi":"10.1159/000540803","DOIUrl":"10.1159/000540803","url":null,"abstract":"<p><strong>Introduction: </strong>Aflatoxin B1 (AFB1) is a potent hepatocarcinogenic mycotoxin found in animal feed and human food components. AFB1 contamination poses severe food safety and economic consequences.</p><p><strong>Methods: </strong>In this study, we used a coumarin-selective medium to isolate bacterial strains that can remove AFB1. Among the isolated bacterial strains, strain c4a exhibited the highest AFB1 removal activity. This strain was subjected to biochemical and phylogenetic characterization. The AFB1 removal activity of the extracellular supernatant of this strain was optimized for growth medium, reaction temperature, pH, and metal ions. The degradation products were analyzed using UPLC-ESI MS/MS.</p><p><strong>Results: </strong>Strain c4a was found to be most closely related to Chryseobacterium timonianum. The extracellular supernatant of C. timonianum c4a grown in a modified nutrient broth (with gelatin peptone and beef extract in a 4:1 ratio) demonstrated the highest AFB1 removal activity when incubated with 1 ppm AFB1 at 60°C, pH 8, and Mn2+ or Mg2+ supplementation for 72 h. Surprisingly, the autoclaved extracellular supernatant also retained AFB1 removal activity. UPLC-ESI MS/MS analysis suggested that AFB1 was transformed into a metabolite (m/z value 285.08) by water molecule addition on furan ring double bond.</p><p><strong>Conclusion: </strong>The AFB1 removal activity of C. timonianum c4a was extracellular, constitutive, and highly thermostable, structurally transforming AFB1 into a much less toxic product. Herein, we present the first evidence of thermostable AFB1 removal activity of a strain belonging to C. timonianum.</p>","PeriodicalId":18457,"journal":{"name":"Microbial Physiology","volume":" ","pages":"182-196"},"PeriodicalIF":0.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141976129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of a Triplex Endpoint PCR Assay for the Detection of SARS-CoV-2: Insights on Cost-Efficiency and Method Design. 开发用于检测 SARS-CoV-2 的三重终点 PCR 检测法:对成本效益和方法设计的见解。
IF 0.1 4区 生物学
Microbial Physiology Pub Date : 2024-01-01 Epub Date: 2024-10-29 DOI: 10.1159/000542308
Camelia Vintilă, Razvan Lucian Coșeriu, Anca Delia Mare, Cristina Nicoleta Ciurea, Radu Togănel, Anastasia Simion, Anca Cighir, Adrian Man
{"title":"Development of a Triplex Endpoint PCR Assay for the Detection of SARS-CoV-2: Insights on Cost-Efficiency and Method Design.","authors":"Camelia Vintilă, Razvan Lucian Coșeriu, Anca Delia Mare, Cristina Nicoleta Ciurea, Radu Togănel, Anastasia Simion, Anca Cighir, Adrian Man","doi":"10.1159/000542308","DOIUrl":"10.1159/000542308","url":null,"abstract":"<p><strong>Introduction: </strong>Lower respiratory tract infections, including COVID-19, have a substantial global impact, making the development of diagnostic tests crucial. The study aimed to develop a new, accurate, fast, and cost-effective PCR-based detection method for SARS-CoV-2, applicable in limited settings and capable of detecting all current variants and potential future pathogens.</p><p><strong>Methods: </strong>The study was conducted between 2020 and 2022 at the molecular biology department of Mures County Clinical Hospital (MCCH), Romania. Initially, pharyngeal and nasal secretions were collected and processed using the real-time qRT-PCR method for routine COVID-19 diagnosis. Ninety-two samples were randomly selected to develop the assay, including samples from different infection periods and negative controls. Complementary DNA was prepared from the selected samples, and the presence and integrity of the extracted RNA were evaluated by amplifying the GAPDH housekeeping gene. Primers for three specific viral genes (N, ORF1ab, and S) were designed, and their efficiency was evaluated using endpoint PCR and sequencing. Finally, the method was optimized and implemented as a one-step triplex PCR assay for routine diagnostic use.</p><p><strong>Results: </strong>The molecular laboratory at the MCCH analyzed a total of 41,818 samples between June 2020 and December 2022. Among these samples, 26.15% tested positive for SARS-CoV-2, while 70.9% were negative and 2.95% were inconclusive or invalid. Three peaks of positive tests were observed in November 2020, April 2021, and February 2022. The study selected 92 preserved RNA samples for triplex PCR assay development, validating the primers' specificity and confirming the quality of the nucleic acids. The comparative analysis showed the efficiency and accuracy of the endpoint reverse transcription triplex PCR method (RT-PCR), indicating its potential as a cost-effective alternative to real-time reverse transcription PCR (qRT-PCR) in low-income countries with limited infrastructure for COVID-19 testing.</p><p><strong>Conclusion: </strong>This method has the potential to facilitate large-scale diagnosis of SARS-CoV-2 infections, allowing for rapid and appropriate therapeutic management and ongoing monitoring of patients. Additionally, the method can be easily adapted for the detection of other pathogens.</p>","PeriodicalId":18457,"journal":{"name":"Microbial Physiology","volume":" ","pages":"264-278"},"PeriodicalIF":0.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142546243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulation of Aerobic Succinate Transporter dctA of E. coli by cAMP-CRP, DcuS-DcuR, and EIIAGlc: Succinate as a Carbon Substrate and Signaling Molecule. cAMP-CRP、DcuS-DcuR 和 EIIAGlc 对大肠杆菌有氧琥珀酸转运体 dctA 的调控:作为碳底物和信号分子的琥珀酸。
IF 3.9 4区 生物学
Microbial Physiology Pub Date : 2024-01-01 Epub Date: 2024-03-01 DOI: 10.1159/000538095
Christopher Schubert, Gottfried Unden
{"title":"Regulation of Aerobic Succinate Transporter dctA of E. coli by cAMP-CRP, DcuS-DcuR, and EIIAGlc: Succinate as a Carbon Substrate and Signaling Molecule.","authors":"Christopher Schubert, Gottfried Unden","doi":"10.1159/000538095","DOIUrl":"10.1159/000538095","url":null,"abstract":"<p><strong>Introduction: </strong>C4-dicarboxylates (C4-DC) have emerged as significant growth substrates and signaling molecules for various Enterobacteriaceae during their colonization of mammalian hosts. Particularly noteworthy is the essential role of fumarate respiration during colonization of pathogenic bacteria. To investigate the regulation of aerobic C4-DC metabolism, the study explored the transcriptional control of the main aerobic C4-DC transporter, dctA, under different carbohydrate conditions. In addition, mutants related to carbon catabolite repression (CCR) and C4-DC regulation (DcuS-DcuR) were examined to better understand the regulatory integration of aerobic C4-DC metabolism into CCR. For initial insight into posttranslational regulation, the interaction between the aerobic C4-DC transporter DctA and EIIAGlc from the glucose-specific phosphotransferase system was investigated.</p><p><strong>Methods: </strong>The expression of dctA was characterized in the presence of various carbohydrates and regulatory mutants affecting CCR. This was accomplished by fusing the dctA promoter (PdctA) to the lacZ reporter gene. Additionally, the interaction between DctA and EIIAGlc of the glucose-specific phosphotransferase system was examined in vivo using a bacterial two-hybrid system.</p><p><strong>Results: </strong>The dctA promoter region contains a class I cAMP-CRP-binding site at position -81.5 and a DcuR-binding site at position -105.5. DcuR, the response regulator of the C4-DC-activated DcuS-DcuR two-component system, and cAMP-CRP stimulate dctA expression. The expression of dctA is subject to the influence of various carbohydrates via cAMP-CRP, which differently modulate cAMP levels. Here we show that EIIAGlc of the glucose-specific phosphotransferase system strongly interacts with DctA, potentially resulting in the exclusion of C4-DCs when preferred carbon substrates, such as sugars, are present. In contrast to the classical inducer exclusion known for lactose permease LacY, inhibition of C4-DC uptake into the cytoplasm affects only its role as a substrate, but not as an inducer since DcuS detects C4-DCs in the periplasmic space (\"substrate exclusion\"). The work shows an interplay between cAMP-CRP and the DcuS-DcuR regulatory system for the regulation of dctA at both transcriptional and posttranslational levels.</p><p><strong>Conclusion: </strong>The study highlights a hierarchical interplay between global (cAMP-CRP) and specific (DcuS-DcuR) regulation of dctA at the transcriptional and posttranslational levels. The integration of global and specific transcriptional regulation of dctA, along with the influence of EIIAGlc on DctA, fine-tunes C4-DC catabolism in response to the availability of other preferred carbon sources. It attributes DctA a central role in the control of aerobic C4-DC catabolism and suggests a new role to EIIAGlc on transporters (control of substrate uptake by substrate exclusion).</p>","PeriodicalId":18457,"journal":{"name":"Microbial Physiology","volume":" ","pages":"108-120"},"PeriodicalIF":3.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140022192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Omics-Based Investigation on Mechanisms Controlling Cellular Internalization of Keratin Monomers during Biodegradation by Stenotrophomonas maltophilia DHHJ. 基于 Omics 的研究:嗜麦芽单胞菌 DHHJ 在生物降解过程中控制角蛋白单体细胞内化的机制。
IF 0.1 4区 生物学
Microbial Physiology Pub Date : 2024-01-01 Epub Date: 2024-07-17 DOI: 10.1159/000540072
Kai Xue, XiaoXiao Song, Wei Zhang, YunLong Zhang, Ting Chen, ZhangJun Cao, Feng Hong, XingQun Zhang
{"title":"Omics-Based Investigation on Mechanisms Controlling Cellular Internalization of Keratin Monomers during Biodegradation by Stenotrophomonas maltophilia DHHJ.","authors":"Kai Xue, XiaoXiao Song, Wei Zhang, YunLong Zhang, Ting Chen, ZhangJun Cao, Feng Hong, XingQun Zhang","doi":"10.1159/000540072","DOIUrl":"10.1159/000540072","url":null,"abstract":"<p><strong>Introduction: </strong>The global poultry industry produces millions of tons of waste feathers every year, which can be bio-degraded to make feed, fertilizer, and daily chemicals. However, feather bio-degradation is a complex process that is not yet fully understood. This results in low degradation efficiency and difficulty in industrial applications. Omics-driven system biology research offers an effective solution to quickly and comprehensively understand the molecularmechanisms involved in a metabolic pathway.</p><p><strong>Methods: </strong>In the early stage of this process, feathers are hydrolyzed into water-soluble keratin monomers. In this study, we used high-throughput RNA-seq technology to analyze the genes involved in the internalization and degradation of keratin monomers in Stenotrophomonas maltophilia DHHJ strain cells. Moreover, we used Co-IP with LC-MS/MS technology to search for proteins that interact with recombinant keratin monomers.</p><p><strong>Results: </strong>We discovered TonB transports and molecular chaperones associating with the keratin monomer, which may play a crucial role in the transmembrane transport of keratin. Meanwhile, multiple proteases belonging to distinct families were identified as binding partners of keratin monomers, among which ATPases associated with diverse cellular activity (AAA+) family proteases are overrepresented. Four genes, including JJL50_15620, JJL50_17955 (TonB-dependent receptors), JJL50_03260 (ABC transporter ATP-binding protein), and JJL50_20035 (ABC transporter substrate-binding protein), were selected as representatives for determining their expressions under different culture conditions using qRT-PCR, and they were found to be upregulated in response to keratin degradation consistent with the data from RNA-seq and Co-IP.</p><p><strong>Conclusion: </strong>This study highlights the complexity of keratin biodegradation in S. maltophilia DHHJ, in which multiple pathways are involved such as protein folding, protein transport, and several protease systems. Our findings provide new insights into the mechanism of feather degradation.</p>","PeriodicalId":18457,"journal":{"name":"Microbial Physiology","volume":" ","pages":"170-181"},"PeriodicalIF":0.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141492588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Health Benefits of Intermittent Fasting. 间歇性断食对健康的益处
IF 0.1 4区 生物学
Microbial Physiology Pub Date : 2024-01-01 Epub Date: 2024-07-02 DOI: 10.1159/000540068
B Lakshmi Reddy, Vamsee S Reddy, Milton H Saier
{"title":"Health Benefits of Intermittent Fasting.","authors":"B Lakshmi Reddy, Vamsee S Reddy, Milton H Saier","doi":"10.1159/000540068","DOIUrl":"10.1159/000540068","url":null,"abstract":"<p><p>We propose that intermittent fasting (time-restricted eating), in agreement with the conclusions of other biologists, as revealed in recent publications, promotes the achievement of numerous health benefits including the extension of human and animal lifespans. Background: There is evidence, obtained both with animal model systems and with humans, that intermittent fasting has health benefits. These benefits include extended longevity, weight loss, and counteracting various disease conditions. Such procedures positively influence the benefits of human tissue-specific microbiomes and minimize the consequences of organellar apoptosis. Key Messages: In this review, we attempt to summarize the predominant evidence, published in the scientific literature, relevant to the conclusions that in general, and in many specific instances, intermittent fasting has long-term benefits to animals, including humans, with respect to overall and specific organismal health and longevity.</p>","PeriodicalId":18457,"journal":{"name":"Microbial Physiology","volume":" ","pages":"142-152"},"PeriodicalIF":0.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11262566/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141492587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanisms of Electroacupuncture in Alleviating Visceral Hypersensitivity in Post-Infectious Irritable Bowel Syndrome Mice: The Role of GDNF Signaling Pathway and Gut Microbiota. 电针缓解感染后肠易激综合征小鼠内脏超敏反应的机制:GDNF 信号通路和肠道微生物群的作用
IF 0.1 4区 生物学
Microbial Physiology Pub Date : 2024-01-01 Epub Date: 2024-10-11 DOI: 10.1159/000541888
Shiyuan Jiang, Lixia Pei, Lu Chen, Jianhua Sun, Yafang Song
{"title":"Mechanisms of Electroacupuncture in Alleviating Visceral Hypersensitivity in Post-Infectious Irritable Bowel Syndrome Mice: The Role of GDNF Signaling Pathway and Gut Microbiota.","authors":"Shiyuan Jiang, Lixia Pei, Lu Chen, Jianhua Sun, Yafang Song","doi":"10.1159/000541888","DOIUrl":"10.1159/000541888","url":null,"abstract":"<p><strong>Introduction: </strong>Post-infectious irritable bowel syndrome (PI-IBS) is a functional bowel disease that develops following an acute gastrointestinal infection. Electroacupuncture (EA) can regulate the gut microbiota and alleviate visceral hypersensitivity. Glial cell-derived neurotrophic factor (GDNF) is a potential factor in visceral hypersensitivity reactions. The aim of this study was to explore whether EA could alleviate visceral hypersensitivity in PI-IBS by regulating gut microbiota through GDNF signaling.</p><p><strong>Methods: </strong>2,4,6-trinitrobenzene sulfonic acid was used to induce visceral hypersensitivity in PI-IBS mice. Intestinal visceral sensitivity was assessed by using the abdominal withdrawal reflex (colorectal distention). 16S ribosomal RNA sequencing profiles the gut microbiome community.</p><p><strong>Results: </strong>GDNF can exacerbate the imbalances of the gut microbiota and increase visceral hypersensitivity compared with the model group. Whereas EA treatment increases the richness and diversity of the gut microbiota, decreases differences among species and alleviates visceral sensitivity.</p><p><strong>Conclusion: </strong>EA can alleviate visceral hypersensitivity in PI-IBS by regulating the gut microbiota via GDNF signaling, providing new insights for mechanistic research on EA in PI-IBS treatment.</p>","PeriodicalId":18457,"journal":{"name":"Microbial Physiology","volume":" ","pages":"255-263"},"PeriodicalIF":0.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142469625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Antioxidant and Anti-Inflammatory Activities of Lindera glauca Extracts. Lindera glauca 提取物的抗氧化和抗炎活性。
IF 3.9 4区 生物学
Microbial Physiology Pub Date : 2024-01-01 Epub Date: 2024-01-29 DOI: 10.1159/000536491
Yi-Na Park, Hyun Ju Lee, Seung-Ho Ohk
{"title":"Antioxidant and Anti-Inflammatory Activities of Lindera glauca Extracts.","authors":"Yi-Na Park, Hyun Ju Lee, Seung-Ho Ohk","doi":"10.1159/000536491","DOIUrl":"10.1159/000536491","url":null,"abstract":"<p><strong>Introduction: </strong>The current study investigated the antioxidant and anti-inflammatory effects of ethanol extracts from Lindera glauca twig (LGT) and leaf/stem (LGLS).</p><p><strong>Methods: </strong>The antioxidant activities were measured by total content of polyphenol and flavonoid, DPPH radical scavenging, and ABTS+ radical scavenging activity. To evaluate the anti-inflammatory effect in the LPS-induced RAW 264.7 cells, protein and mRNA expression of major inflammatory factors were analyzed using Western blot analysis and RT-PCR.</p><p><strong>Results: </strong>The total polyphenol content of LGT and LGLS was 88.45 ± 11.74 and 115.75 ± 7.87 GA mg/g, respectively. The total flavonoid content was 66 ± 2.89 and 74.33 ± 2.89 QE mg/g. Both LGT and LGLS showed high DPPH and ABTS+ radical scavenging activities. Neither LGT nor LGLS was cytotoxic to RAW 264.7 cells. The anti-inflammatory activities were measured by LPS-induced RAW 264.7 cells. LGT and LGLS showed inhibition of the LPS-induced production of nitric oxide (NO), inducible NO synthase, cyclooxygenase-2 at the protein and mRNA levels, as determined by Western blotting and RT-PCR, respectively. In addition, the release of tumor necrosis factor-α and interleukin-6 mRNA expression levels of these cytokines was reduced by LGT and LGLS.</p><p><strong>Conclusion: </strong>These results suggest that LGT and LGLS extracts have potential for use as a functional antioxidant and anti-inflammatory ingredient in cosmetic industry.</p>","PeriodicalId":18457,"journal":{"name":"Microbial Physiology","volume":" ","pages":"78-87"},"PeriodicalIF":3.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139575970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Catabolic Network of the Fermentative Gut Bacterium Phocaeicola vulgatus (Phylum Bacteroidota) from a Physiologic-Proteomic Perspective. 从生理学-蛋白质组学角度看发酵肠道细菌 Phocaeicola vulgatus(类杆菌科)的分解代谢网络。
IF 3.9 4区 生物学
Microbial Physiology Pub Date : 2024-01-01 Epub Date: 2024-01-23 DOI: 10.1159/000536327
Urte Clausen, Sören-Tobias Vital, Pia Lambertus, Martina Gehler, Sabine Scheve, Lars Wöhlbrand, Ralf Rabus
{"title":"Catabolic Network of the Fermentative Gut Bacterium Phocaeicola vulgatus (Phylum Bacteroidota) from a Physiologic-Proteomic Perspective.","authors":"Urte Clausen, Sören-Tobias Vital, Pia Lambertus, Martina Gehler, Sabine Scheve, Lars Wöhlbrand, Ralf Rabus","doi":"10.1159/000536327","DOIUrl":"10.1159/000536327","url":null,"abstract":"<p><strong>Introduction: </strong>Phocaeicola vulgatus (formerly Bacteroides vulgatus) is a prevalent member of human and animal guts, where it influences by its dietary-fiber-fueled, fermentative metabolism the microbial community as well as the host health. Moreover, the fermentative metabolism of P. vulgatus bears potential for a sustainable production of bulk chemicals. The aim of the present study was to refine the current understanding of the P. vulgatus physiology.</p><p><strong>Methods: </strong>P. vulgatus was adapted to anaerobic growth with 14 different carbohydrates, ranging from hexoses, pentoses, hemicellulose, via an uronic acid to deoxy sugars. These substrate-adapted cells formed the basis to define the growth stoichiometries by quantifying growth/fermentation parameters and to reconstruct the catabolic network by applying differential proteomics.</p><p><strong>Results: </strong>The determination of growth performance revealed, e.g., doubling times (h) from 1.39 (arabinose) to 14.26 (glucuronate), biomass yields (gCDW/mmolS) from 0.01 (fucose) to 0.27 (α-cyclodextrin), and ATP yields (m<sc>M</sc>ATP/m<sc>M</sc>C) from 0.21 (rhamnose) to 0.60 (glucuronate/xylan). Furthermore, fermentation product spectra were determined, ranging from broad and balanced (with xylan: acetate, succinate, formate, and propanoate) to rather one sided (with rhamnose or fucose: mainly propane-1,2-diol). The fermentation network serving all tested compounds is composed of 56 proteins (all identified), with several peripheral reaction sequences formed with high substrate specificity (e.g., conversion of arabinose to <sc>d</sc>-xylulose-3-phosphate) implicating a fine-tuned regulation. By contrast, central modules (e.g., glycolysis or the reaction sequence from PEP to succinate) were constitutively formed. Extensive formation of propane-1,2-diol from rhamnose and fucose involves rhamnulokinase (RhaB), rhamnulose-1-phosphate kinase (RhaD), and lactaldehyde reductase (FucO). Furthermore, Sus-like systems are apparently the most relevant uptake systems and a complex array of transmembrane electron-transfer systems (e.g., Na+-pumping Rnf and Nqr complexes, fumarate reductase) as well as F- and V-type ATP-synthases were detected.</p><p><strong>Conclusions: </strong>The present study provides insights into the potential contribution of P. vulgatus to the gut metabolome and into the strain's biotechnological potential for sustainable production of short-chain fatty acids and alcohols.</p>","PeriodicalId":18457,"journal":{"name":"Microbial Physiology","volume":" ","pages":"88-107"},"PeriodicalIF":3.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139542428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of a Novel LysR Family Transcriptional Regulator Controlling Acquisition of Sulfur Sources in Acinetobacter baumannii. 鉴定控制鲍曼不动杆菌获取硫源的新型 LysR 家族转录调节器
IF 3.9 4区 生物学
Microbial Physiology Pub Date : 2023-01-01 Epub Date: 2023-01-10 DOI: 10.1159/000529038
Alaska Pokhrel, Hue Dinh, Liping Li, Karl A Hassan, Amy K Cain, Ian T Paulsen
{"title":"Identification of a Novel LysR Family Transcriptional Regulator Controlling Acquisition of Sulfur Sources in Acinetobacter baumannii.","authors":"Alaska Pokhrel, Hue Dinh, Liping Li, Karl A Hassan, Amy K Cain, Ian T Paulsen","doi":"10.1159/000529038","DOIUrl":"10.1159/000529038","url":null,"abstract":"<p><p><sc>l</sc>-cysteine biosynthesis from inorganic sulfur represents a major mechanism by which reduced sulfur is incorporated into organic compounds. Cysteine biosynthesis and regulation is well characterized in Escherichia coli. However, the regulation of sulfur metabolism in Acinetobacter baumannii is only partly understood, with the LysR-type regulator, GigC known to control some aspects of sulfur reduction. In this study, we have used transcriptomics and bioinformatic analyses to characterize a novel LysR-type transcriptional regulator encoded by ABUW_1016 (cbl), in a highly multidrug resistant and virulent isolate of A. baumannii. We have shown that Cbl is involved in controlling expression of the genes required for uptake and reduction of various sulfur sources in A. baumannii. Collectively, we have identified the global regulon of Cbl and proposed a model of cysteine biosynthesis and its regulation by Cbl and GigC in A. baumannii.</p>","PeriodicalId":18457,"journal":{"name":"Microbial Physiology","volume":" ","pages":"27-35"},"PeriodicalIF":3.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10515810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信