Microbial PhysiologyPub Date : 2024-01-01Epub Date: 2024-07-02DOI: 10.1159/000540068
B Lakshmi Reddy, Vamsee S Reddy, Milton H Saier
{"title":"Health Benefits of Intermittent Fasting.","authors":"B Lakshmi Reddy, Vamsee S Reddy, Milton H Saier","doi":"10.1159/000540068","DOIUrl":"10.1159/000540068","url":null,"abstract":"<p><p>We propose that intermittent fasting (time-restricted eating), in agreement with the conclusions of other biologists, as revealed in recent publications, promotes the achievement of numerous health benefits including the extension of human and animal lifespans. Background: There is evidence, obtained both with animal model systems and with humans, that intermittent fasting has health benefits. These benefits include extended longevity, weight loss, and counteracting various disease conditions. Such procedures positively influence the benefits of human tissue-specific microbiomes and minimize the consequences of organellar apoptosis. Key Messages: In this review, we attempt to summarize the predominant evidence, published in the scientific literature, relevant to the conclusions that in general, and in many specific instances, intermittent fasting has long-term benefits to animals, including humans, with respect to overall and specific organismal health and longevity.</p>","PeriodicalId":18457,"journal":{"name":"Microbial Physiology","volume":null,"pages":null},"PeriodicalIF":0.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11262566/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141492587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Microbial PhysiologyPub Date : 2024-01-01Epub Date: 2024-10-11DOI: 10.1159/000541888
Shiyuan Jiang, Lixia Pei, Lu Chen, Jianhua Sun, Yafang Song
{"title":"Mechanisms of Electroacupuncture in Alleviating Visceral Hypersensitivity in Post-Infectious Irritable Bowel Syndrome Mice: The Role of GDNF Signaling Pathway and Gut Microbiota.","authors":"Shiyuan Jiang, Lixia Pei, Lu Chen, Jianhua Sun, Yafang Song","doi":"10.1159/000541888","DOIUrl":"10.1159/000541888","url":null,"abstract":"<p><strong>Introduction: </strong>Post-infectious irritable bowel syndrome (PI-IBS) is a functional bowel disease that develops following an acute gastrointestinal infection. Electroacupuncture (EA) can regulate the gut microbiota and alleviate visceral hypersensitivity. Glial cell-derived neurotrophic factor (GDNF) is a potential factor in visceral hypersensitivity reactions. The aim of this study was to explore whether EA could alleviate visceral hypersensitivity in PI-IBS by regulating gut microbiota through GDNF signaling.</p><p><strong>Methods: </strong>2,4,6-trinitrobenzene sulfonic acid was used to induce visceral hypersensitivity in PI-IBS mice. Intestinal visceral sensitivity was assessed by using the abdominal withdrawal reflex (colorectal distention). 16S ribosomal RNA sequencing profiles the gut microbiome community.</p><p><strong>Results: </strong>GDNF can exacerbate the imbalances of the gut microbiota and increase visceral hypersensitivity compared with the model group. Whereas EA treatment increases the richness and diversity of the gut microbiota, decreases differences among species and alleviates visceral sensitivity.</p><p><strong>Conclusion: </strong>EA can alleviate visceral hypersensitivity in PI-IBS by regulating the gut microbiota via GDNF signaling, providing new insights for mechanistic research on EA in PI-IBS treatment.</p>","PeriodicalId":18457,"journal":{"name":"Microbial Physiology","volume":null,"pages":null},"PeriodicalIF":0.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142469625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Microbial PhysiologyPub Date : 2024-01-01Epub Date: 2024-01-29DOI: 10.1159/000536491
Yi-Na Park, Hyun Ju Lee, Seung-Ho Ohk
{"title":"Antioxidant and Anti-Inflammatory Activities of Lindera glauca Extracts.","authors":"Yi-Na Park, Hyun Ju Lee, Seung-Ho Ohk","doi":"10.1159/000536491","DOIUrl":"10.1159/000536491","url":null,"abstract":"<p><strong>Introduction: </strong>The current study investigated the antioxidant and anti-inflammatory effects of ethanol extracts from Lindera glauca twig (LGT) and leaf/stem (LGLS).</p><p><strong>Methods: </strong>The antioxidant activities were measured by total content of polyphenol and flavonoid, DPPH radical scavenging, and ABTS+ radical scavenging activity. To evaluate the anti-inflammatory effect in the LPS-induced RAW 264.7 cells, protein and mRNA expression of major inflammatory factors were analyzed using Western blot analysis and RT-PCR.</p><p><strong>Results: </strong>The total polyphenol content of LGT and LGLS was 88.45 ± 11.74 and 115.75 ± 7.87 GA mg/g, respectively. The total flavonoid content was 66 ± 2.89 and 74.33 ± 2.89 QE mg/g. Both LGT and LGLS showed high DPPH and ABTS+ radical scavenging activities. Neither LGT nor LGLS was cytotoxic to RAW 264.7 cells. The anti-inflammatory activities were measured by LPS-induced RAW 264.7 cells. LGT and LGLS showed inhibition of the LPS-induced production of nitric oxide (NO), inducible NO synthase, cyclooxygenase-2 at the protein and mRNA levels, as determined by Western blotting and RT-PCR, respectively. In addition, the release of tumor necrosis factor-α and interleukin-6 mRNA expression levels of these cytokines was reduced by LGT and LGLS.</p><p><strong>Conclusion: </strong>These results suggest that LGT and LGLS extracts have potential for use as a functional antioxidant and anti-inflammatory ingredient in cosmetic industry.</p>","PeriodicalId":18457,"journal":{"name":"Microbial Physiology","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139575970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Microbial PhysiologyPub Date : 2024-01-01Epub Date: 2024-01-23DOI: 10.1159/000536327
Urte Clausen, Sören-Tobias Vital, Pia Lambertus, Martina Gehler, Sabine Scheve, Lars Wöhlbrand, Ralf Rabus
{"title":"Catabolic Network of the Fermentative Gut Bacterium Phocaeicola vulgatus (Phylum Bacteroidota) from a Physiologic-Proteomic Perspective.","authors":"Urte Clausen, Sören-Tobias Vital, Pia Lambertus, Martina Gehler, Sabine Scheve, Lars Wöhlbrand, Ralf Rabus","doi":"10.1159/000536327","DOIUrl":"10.1159/000536327","url":null,"abstract":"<p><strong>Introduction: </strong>Phocaeicola vulgatus (formerly Bacteroides vulgatus) is a prevalent member of human and animal guts, where it influences by its dietary-fiber-fueled, fermentative metabolism the microbial community as well as the host health. Moreover, the fermentative metabolism of P. vulgatus bears potential for a sustainable production of bulk chemicals. The aim of the present study was to refine the current understanding of the P. vulgatus physiology.</p><p><strong>Methods: </strong>P. vulgatus was adapted to anaerobic growth with 14 different carbohydrates, ranging from hexoses, pentoses, hemicellulose, via an uronic acid to deoxy sugars. These substrate-adapted cells formed the basis to define the growth stoichiometries by quantifying growth/fermentation parameters and to reconstruct the catabolic network by applying differential proteomics.</p><p><strong>Results: </strong>The determination of growth performance revealed, e.g., doubling times (h) from 1.39 (arabinose) to 14.26 (glucuronate), biomass yields (gCDW/mmolS) from 0.01 (fucose) to 0.27 (α-cyclodextrin), and ATP yields (m<sc>M</sc>ATP/m<sc>M</sc>C) from 0.21 (rhamnose) to 0.60 (glucuronate/xylan). Furthermore, fermentation product spectra were determined, ranging from broad and balanced (with xylan: acetate, succinate, formate, and propanoate) to rather one sided (with rhamnose or fucose: mainly propane-1,2-diol). The fermentation network serving all tested compounds is composed of 56 proteins (all identified), with several peripheral reaction sequences formed with high substrate specificity (e.g., conversion of arabinose to <sc>d</sc>-xylulose-3-phosphate) implicating a fine-tuned regulation. By contrast, central modules (e.g., glycolysis or the reaction sequence from PEP to succinate) were constitutively formed. Extensive formation of propane-1,2-diol from rhamnose and fucose involves rhamnulokinase (RhaB), rhamnulose-1-phosphate kinase (RhaD), and lactaldehyde reductase (FucO). Furthermore, Sus-like systems are apparently the most relevant uptake systems and a complex array of transmembrane electron-transfer systems (e.g., Na+-pumping Rnf and Nqr complexes, fumarate reductase) as well as F- and V-type ATP-synthases were detected.</p><p><strong>Conclusions: </strong>The present study provides insights into the potential contribution of P. vulgatus to the gut metabolome and into the strain's biotechnological potential for sustainable production of short-chain fatty acids and alcohols.</p>","PeriodicalId":18457,"journal":{"name":"Microbial Physiology","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139542428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Microbial PhysiologyPub Date : 2023-01-01Epub Date: 2023-01-10DOI: 10.1159/000529038
Alaska Pokhrel, Hue Dinh, Liping Li, Karl A Hassan, Amy K Cain, Ian T Paulsen
{"title":"Identification of a Novel LysR Family Transcriptional Regulator Controlling Acquisition of Sulfur Sources in Acinetobacter baumannii.","authors":"Alaska Pokhrel, Hue Dinh, Liping Li, Karl A Hassan, Amy K Cain, Ian T Paulsen","doi":"10.1159/000529038","DOIUrl":"10.1159/000529038","url":null,"abstract":"<p><p><sc>l</sc>-cysteine biosynthesis from inorganic sulfur represents a major mechanism by which reduced sulfur is incorporated into organic compounds. Cysteine biosynthesis and regulation is well characterized in Escherichia coli. However, the regulation of sulfur metabolism in Acinetobacter baumannii is only partly understood, with the LysR-type regulator, GigC known to control some aspects of sulfur reduction. In this study, we have used transcriptomics and bioinformatic analyses to characterize a novel LysR-type transcriptional regulator encoded by ABUW_1016 (cbl), in a highly multidrug resistant and virulent isolate of A. baumannii. We have shown that Cbl is involved in controlling expression of the genes required for uptake and reduction of various sulfur sources in A. baumannii. Collectively, we have identified the global regulon of Cbl and proposed a model of cysteine biosynthesis and its regulation by Cbl and GigC in A. baumannii.</p>","PeriodicalId":18457,"journal":{"name":"Microbial Physiology","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10515810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimization of Cultural Conditions for Pectinase Production by Streptomyces sp. and Characterization of Partially Purified Enzymes.","authors":"Sarita Shrestha, Chonlong Chio, Janak Raj Khatiwada, Aristide Laurel Mokale Kognou, Xuantong Chen, Wensheng Qin","doi":"10.1159/000528257","DOIUrl":"10.1159/000528257","url":null,"abstract":"<p><p>The cultural parameters of Streptomyces sp. for pectinase production were optimized using the Box-Behnken design. The maximum pectinase production was obtained after 58 h at 35°C and pH 7 upon submerged fermentation in yeast extract-containing media. The enzymes were partially purified with acetone precipitation, and the analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and zymogram revealed that Streptomyces sp. produced two pectinases protein with molecular weights of about 25 and 75 kDa. The pectinase activity was detected in a wide range of temperatures (30°C-80°C) and pH (3-9) with maximum pectinase activities observed at 70°C and pH 5 and 9. The enzymes retained about 30-40% of their activities even after incubating the enzyme at different temperatures for 120 min. The pectinase activities of Streptomyces sp. were enhanced in the media containing 1.5% pectin, 1% casein as a nitrogen source, 0.5 mM MgSO4, and 5 mM NaCl. Further, the addition of Tween-20, amino acids, and vitamins to the media also enhanced the pectinase activity. Moreover, the bacterium illustrated the ability to decolorize crystal violet dye efficiently. The decolorization rate ranged from 39.29 to 53.75%, showing the highest bacterial decolorization in the media containing 2 mg/mL crystal violet at 144 h. Therefore, the bacterium has the potential in treating wastewater produced by industries like textile industries.</p>","PeriodicalId":18457,"journal":{"name":"Microbial Physiology","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40701873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Microbial PhysiologyPub Date : 2023-01-01Epub Date: 2022-08-30DOI: 10.1159/000526662
Jennie C Hildenbrand, Georg A Sprenger, Attila Teleki, Ralf Takors, Dieter Jendrossek
{"title":"Polyphosphate Kinases Phosphorylate Thiamine Phosphates.","authors":"Jennie C Hildenbrand, Georg A Sprenger, Attila Teleki, Ralf Takors, Dieter Jendrossek","doi":"10.1159/000526662","DOIUrl":"10.1159/000526662","url":null,"abstract":"<p><p>Polyphosphate kinases (PPKs) catalyze the reversible transfer of the γ-phosphate moiety of ATP (or of another nucleoside triphosphate) to a growing chain of polyphosphate (polyP). In this study, we describe that PPKs of various sources are additionally able to phosphorylate thiamine diphosphate (ThP2) to produce thiamine triphosphate (ThP3) and even thiamine tetraphosphate in vitro using polyP as phosphate donor. Furthermore, all tested PPK2s, but not PPK1s, were able to phosphorylate thiamine monophosphate (ThP1) to ThP2 and ThP3 although at low efficiency. The predicted masses and identities of the mono- and oligo-phosphorylated thiamine metabolites were identified by high-performance liquid chromatography tandem mass spectrometry. Moreover, the biological activity of ThP2, that was synthesized by phosphorylation of ThP1 with polyP and PPK, as a cofactor of ThP2-dependent enzymes (here transketolase TktA from Escherichia coli) was confirmed in a coupled enzyme assay. Our study shows that PPKs are promiscuous enzymes in vitro that could be involved in the formation of a variety of phosphorylated metabolites in vivo.</p>","PeriodicalId":18457,"journal":{"name":"Microbial Physiology","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40331484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Microbial PhysiologyPub Date : 2023-01-01Epub Date: 2023-09-30DOI: 10.1159/000532088
Gunnar Sturm, Mohammad Mojarrad, Anne-Kristin Kaster
{"title":"Targeted Cell Labeling and Sorting of Prokaryotes for Cultivation and Omics Approaches.","authors":"Gunnar Sturm, Mohammad Mojarrad, Anne-Kristin Kaster","doi":"10.1159/000532088","DOIUrl":"10.1159/000532088","url":null,"abstract":"<p><p>To date, the vast majority of prokaryotic organisms escapes detailed characterization because they cannot be isolated in axenic cultures. These organisms are referred to as microbial dark matter. Targeted labelling and sorting of these microorganisms pave the way for single-cell, enrichment, or cultivation approaches. In this review, we describe an array of different methods ranging from labeling-free to specific labelling techniques. In addition, different cell sorting methods and their combinations with targeting strategies are summarized and downstream applications like sequencing and cultivation are reviewed. Recent advances, challenges, and limitations of the particular methods are discussed with respect to cell viability, genome integrity as well as throughput, in order to help researchers select the most suitable methods for their specific research questions.</p>","PeriodicalId":18457,"journal":{"name":"Microbial Physiology","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41141966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Microbial PhysiologyPub Date : 2023-01-01Epub Date: 2023-06-15DOI: 10.1159/000531468
Kevin J Hendargo, Ashay O Patel, Onyeka S Chukwudozie, Gabriel Moreno-Hagelsieb, J Andres Christen, Arturo Medrano-Soto, Milton H Saier
{"title":"Sequence Similarity among Structural Repeats in the Piezo Family of Mechanosensitive Ion Channels.","authors":"Kevin J Hendargo, Ashay O Patel, Onyeka S Chukwudozie, Gabriel Moreno-Hagelsieb, J Andres Christen, Arturo Medrano-Soto, Milton H Saier","doi":"10.1159/000531468","DOIUrl":"10.1159/000531468","url":null,"abstract":"<p><p>Members of the Piezo family of mechanically activated cation channels are involved in multiple physiological processes in higher eukaryotes, including vascular development, cell differentiation, touch perception, hearing, and more, but they are also common in single-celled eukaryotic microorganisms. Mutations in these proteins in humans are associated with a variety of diseases, such as colorectal adenomatous polyposis, dehydrated hereditary stomatocytosis, and hereditary xerocytosis. Available 3D structures for Piezo proteins show nine regions of four transmembrane segments each that have the same fold. Despite the remarkable similarity among the nine characteristic structural repeats in the family, no significant sequence similarity among them has been reported. Using bioinformatics approaches and the Transporter Classification Database (TCDB) as reference, we reliably identified sequence similarity among repeats based on four lines of evidence: (1) hidden Markov model-profile similarities across repeats at the family level, (2) pairwise sequence similarities between different repeats across Piezo homologs, (3) Piezo-specific conserved sequence signatures that consistently identify the same regions across repeats, and (4) conserved residues that maintain the same orientation and location in 3D space.</p>","PeriodicalId":18457,"journal":{"name":"Microbial Physiology","volume":null,"pages":null},"PeriodicalIF":0.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11283329/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9639934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Microbial PhysiologyPub Date : 2023-01-01Epub Date: 2023-03-21DOI: 10.1159/000530228
Aristide Laurel Mokale Kognou, Chonlong Chio, Janak Raj Khatiwada, Sarita Shrestha, Xuantong Chen, Yuen Zhu, Rosalie Anne Ngono Ngane, Gabriel Agbor Agbor, Zi-Hua Jiang, Chunbao Charles Xu, Wensheng Qin
{"title":"Characterization of Potential Virulence, Resistance to Antibiotics and Heavy Metals, and Biofilm-Forming Capabilities of Soil Lignocellulolytic Bacteria.","authors":"Aristide Laurel Mokale Kognou, Chonlong Chio, Janak Raj Khatiwada, Sarita Shrestha, Xuantong Chen, Yuen Zhu, Rosalie Anne Ngono Ngane, Gabriel Agbor Agbor, Zi-Hua Jiang, Chunbao Charles Xu, Wensheng Qin","doi":"10.1159/000530228","DOIUrl":"10.1159/000530228","url":null,"abstract":"<p><p>Soil bacteria participate in self-immobilization processes for survival, persistence, and production of virulence factors in some niches or hosts through their capacities for autoaggregation, cell surface hydrophobicity, biofilm formation, and antibiotic and heavy metal resistance. This study investigated potential virulence, antibiotic and heavy metal resistance, solvent adhesion, and biofilm-forming capabilities of six cellulolytic bacteria isolated from soil samples: Paenarthrobacter sp. MKAL1, Hymenobacter sp. MKAL2, Mycobacterium sp. MKAL3, Stenotrophomonas sp. MKAL4, Chryseobacterium sp. MKAL5, and Bacillus sp. MKAL6. Strains were subjected to phenotypic methods, including heavy metal and antibiotic susceptibility and virulence factors (protease, lipase, capsule production, autoaggregation, hydrophobicity, and biofilm formation). The effect of ciprofloxacin was also investigated on bacterial susceptibility over time, cell membrane, and biofilm formation. Strains MKAL2, MKAL5, and MKAL6 exhibited protease and lipase activities, while only MKAL6 produced capsules. All strains were capable of aggregating, forming biofilm, and adhering to solvents. Strains tolerated high amounts of chromium, lead, zinc, nickel, and manganese and were resistant to lincomycin. Ciprofloxacin exhibited bactericidal activity against these strains. Although the phenotypic evaluation of virulence factors of bacteria can indicate their pathogenic nature, an in-depth genetic study of virulence, antibiotic and heavy metal resistance genes is required.</p>","PeriodicalId":18457,"journal":{"name":"Microbial Physiology","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9156717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}