Identification of a Novel LysR Family Transcriptional Regulator Controlling Acquisition of Sulfur Sources in Acinetobacter baumannii.

IF 0.1 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Microbial Physiology Pub Date : 2023-01-01 Epub Date: 2023-01-10 DOI:10.1159/000529038
Alaska Pokhrel, Hue Dinh, Liping Li, Karl A Hassan, Amy K Cain, Ian T Paulsen
{"title":"Identification of a Novel LysR Family Transcriptional Regulator Controlling Acquisition of Sulfur Sources in Acinetobacter baumannii.","authors":"Alaska Pokhrel, Hue Dinh, Liping Li, Karl A Hassan, Amy K Cain, Ian T Paulsen","doi":"10.1159/000529038","DOIUrl":null,"url":null,"abstract":"<p><p><sc>l</sc>-cysteine biosynthesis from inorganic sulfur represents a major mechanism by which reduced sulfur is incorporated into organic compounds. Cysteine biosynthesis and regulation is well characterized in Escherichia coli. However, the regulation of sulfur metabolism in Acinetobacter baumannii is only partly understood, with the LysR-type regulator, GigC known to control some aspects of sulfur reduction. In this study, we have used transcriptomics and bioinformatic analyses to characterize a novel LysR-type transcriptional regulator encoded by ABUW_1016 (cbl), in a highly multidrug resistant and virulent isolate of A. baumannii. We have shown that Cbl is involved in controlling expression of the genes required for uptake and reduction of various sulfur sources in A. baumannii. Collectively, we have identified the global regulon of Cbl and proposed a model of cysteine biosynthesis and its regulation by Cbl and GigC in A. baumannii.</p>","PeriodicalId":18457,"journal":{"name":"Microbial Physiology","volume":null,"pages":null},"PeriodicalIF":0.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1159/000529038","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

l-cysteine biosynthesis from inorganic sulfur represents a major mechanism by which reduced sulfur is incorporated into organic compounds. Cysteine biosynthesis and regulation is well characterized in Escherichia coli. However, the regulation of sulfur metabolism in Acinetobacter baumannii is only partly understood, with the LysR-type regulator, GigC known to control some aspects of sulfur reduction. In this study, we have used transcriptomics and bioinformatic analyses to characterize a novel LysR-type transcriptional regulator encoded by ABUW_1016 (cbl), in a highly multidrug resistant and virulent isolate of A. baumannii. We have shown that Cbl is involved in controlling expression of the genes required for uptake and reduction of various sulfur sources in A. baumannii. Collectively, we have identified the global regulon of Cbl and proposed a model of cysteine biosynthesis and its regulation by Cbl and GigC in A. baumannii.

鉴定控制鲍曼不动杆菌获取硫源的新型 LysR 家族转录调节器
从无机硫中生物合成 l-半胱氨酸是还原硫与有机化合物结合的主要机制。大肠杆菌中的半胱氨酸生物合成和调控特征十分明确。然而,人们对鲍曼不动杆菌(Acinetobacter baumannii)中硫代谢的调控只有部分了解,已知 LysR 型调控因子 GigC 可控制硫还原的某些方面。在本研究中,我们利用转录组学和生物信息学分析,在鲍曼不动杆菌的一个高度耐多药的毒力分离株中鉴定了由 ABUW_1016 (cbl)编码的新型 LysR 型转录调控因子。我们发现 Cbl 参与控制鲍曼不动杆菌吸收和还原各种硫源所需基因的表达。总之,我们确定了 Cbl 的全球调控因子,并提出了鲍曼不动杆菌半胱氨酸生物合成及其受 Cbl 和 GigC 调控的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.20
自引率
2.60%
发文量
13
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信