Arne Weiten, K. Kalvelage, Meina Neumann-Schaal, Ramona Buschen, Sabine Scheve, M. Winklhofer, R. Rabus
{"title":"Nanomolar Responsiveness of Marine Phaeobacter inhibens DSM 17395 toward Carbohydrates and Amino Acids","authors":"Arne Weiten, K. Kalvelage, Meina Neumann-Schaal, Ramona Buschen, Sabine Scheve, M. Winklhofer, R. Rabus","doi":"10.1159/000524702","DOIUrl":"https://doi.org/10.1159/000524702","url":null,"abstract":"Phaeobacter inhibens DSM 17395 is a heterotrophic member of the ubiquitous, marine Roseobacter group and specializes in the aerobic utilization of carbohydrates and amino acids via pathways widespread among roseobacters. The in vivo responsiveness of P. inhibens DSM 17395 was studied with nonadapted cells (succinate-grown), which were exposed to a single pulse (100–0.01 µM) each of N-acetylglucosamine, mannitol, xylose, leucine, phenylalanine, or tryptophan (effectors). Responsiveness was then determined by time-resolved transcript analyses (quantitative reverse transcription-PCR) of “degradation” and “uptake” genes selected based on previously reported substrate-specific proteome profiles. The transcriptional response thresholds were: 50–100 nM for nagK (N-acetylglucosamine kinase), paaA (ring 1,2-phenylacetyl-CoA epoxidase), and kynA (tryptophan 2,3-dioxygenase), 10–50 nM for xylA (xylose isomerase), and around 10 nM for mtlK (mannitol 2-dehydrogenase). A threshold for leucine could not be determined due to the elevated intrinsic presence of leucine in the exometabolome of succinate-grown cells (no effector addition). Notably, the response thresholds for presumptive carbohydrate-binding proteins of ABC-transporters were in the same range or even lower: 0.1–1 µM for c27930 (N-acetylglucosamine) and even below 10 nM for c13210 (mannitol) and xylF (xylose). These results shed new light on the sensory/regulatory sensitivity of a well-studied roseobacter for recognizing potential substrates at low ambient concentrations and on the concentration threshold below which these might escape biodegradation (“emergent recalcitrance” concept of dissolved organic matter persistence).","PeriodicalId":18457,"journal":{"name":"Microbial Physiology","volume":"32 1","pages":"108 - 121"},"PeriodicalIF":3.9,"publicationDate":"2022-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49384769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Interplay between the Conserved Pore Residues Thr-91 and His-209 Controls Formate Translocation through the FocA Channel","authors":"Michelle Kammel, Oliver Trebbin, R. Sawers","doi":"10.1159/000524454","DOIUrl":"https://doi.org/10.1159/000524454","url":null,"abstract":"The formate channel A (FocA) belongs to the formate-nitrite transporter (FNT) family, members of which permeate small monovalent anions. FocA from Escherichia coli translocates formate/formic acid bi-directionally across the cytoplasmic membrane during fermentative growth. Two residues are particularly well-conserved within the translocation pores of FNTs: threonine-91 and histidine-209, based on E. coli FocA numbering. These residues are located at the tips of two broken transmembrane helices and control anion passage. H209 is the only charged residue within the pore and interacts with T91. Here, we addressed the role of the T91-H209 interaction network in the permeation of formate in vivo through FocA by performing an extensive amino acid-exchange study. Monitoring changes in intracellular formate using a formate-responsive fdhFP::lacZ reporter system revealed that T91 is essential for the ability of FocA to translocate formate bi-directionally. Only exchange for serine was partially tolerated, indicating that the hydroxyl group of T91 is mechanistically important. Substitution of H209 with N or Q was previously shown to convert FocA into a formate efflux channel. We show here that residue exchanges A, I, and T at this position resulted in a similar phenotype. Moreover, efflux function was confirmed for these FocA variants by measuring excreted formate in the culture medium. Substitution of bulky or charged residues for H209 prevented bi-directional formate passage. Studies using hypophosphite, a toxic analogue of formate taken up by FocA, and which causes impaired growth, confirmed that T91 and H209 substitutions essentially abolished, or drastically reduced, FocA’s translocation activity, as shown by effects on growth rate. The exceptions were T91S- and T91Y-exchange variants that retained partial ability to take up inhibitory hypophosphite. Together, our findings indicate that T91 is essential for formate permeation in both directions; however, it is particularly important to allow anion efflux. Moreover, H209 is essential for formate uptake by FocA, strongly suggesting that protonation-deprotonation of this residue plays a role in formate uptake. Finally, our results substantiate the premise that efflux and influx of formate by FocA are mechanistically distinct processes that are controlled by the interplay between T91 and H209.","PeriodicalId":18457,"journal":{"name":"Microbial Physiology","volume":"32 1","pages":"95 - 107"},"PeriodicalIF":3.9,"publicationDate":"2022-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46537778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daniel Wünsch, Sabine Scheve, Arne Weiten, K. Kalvelage, R. Rabus
{"title":"Luciferase-Based Determination of ATP/NAD(H) Pools in a Marine (Environmental) Bacterium","authors":"Daniel Wünsch, Sabine Scheve, Arne Weiten, K. Kalvelage, R. Rabus","doi":"10.1159/000522414","DOIUrl":"https://doi.org/10.1159/000522414","url":null,"abstract":"In all living organisms, adenosine triphosphate (ATP) and NAD(H) represent universal molecular currencies for energy and redox state, respectively, and are thus widely applicable molecular proxies for an organism’s viability and activity. To this end, corresponding luciferase-based assays in combination with a microplate reader were established with the marine model bacterium Phaeobacter inhibens DSM 17395 (Escherichia coli K12 served as reference). Grey multiwell plates best balanced sensitivity and crosstalk, and optimal incubation times were 5 min and 30 min for the ATP and NAD(H) assay, respectively, together allowing limits of detection of 0.042, 0.470 and 0.710 nM for ATP, NAD+, and NADH, respectively. Quenching of bacterial cell samples involved Tris-EDTA-DTAB and bicarbonate base-DTAB for ATP and NAD(H) assays, respectively. The ATP and NAD(H) yields determined for P. inhibens DSM 17395 at ¼ ODmax were found to reside well within the range previously reported for E. coli and other bacteria, e.g., 3.28 µmol ATP (g cellsdry)−1. Thus, the here described methods for luciferase-based determination of ATP/NAD(H) pools open a promising approach to investigate energy and redox states in marine (environmental) bacteria.","PeriodicalId":18457,"journal":{"name":"Microbial Physiology","volume":"32 1","pages":"122 - 134"},"PeriodicalIF":3.9,"publicationDate":"2022-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48395045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Assembly of Bacillus subtilis Dynamin into Membrane-Protective Structures in Response to Environmental Stress Is Mediated by Moderate Changes in Dynamics at a Single Molecule Level","authors":"Laura Sattler, P. Graumann","doi":"10.1159/000521585","DOIUrl":"https://doi.org/10.1159/000521585","url":null,"abstract":"Dynamin-like proteins are membrane-associated GTPases, conserved in bacteria and in eukaryotes, that can mediate nucleotide-driven membrane deformation or membrane fusion reactions. Bacillus subtilis’ DynA has been shown to play an important role in protecting cells against chemicals that induce membrane leakage, and to form an increased number of membrane-associated structures after induction of membrane stress. We have studied the dynamics of DynA at a single molecule level in real time, to investigate how assembly of stress-induced structures is accompanied by changes in molecule dynamics. We show that DynA molecule displacements are best described by the existence of three distinct populations, a static mode, a low-mobility, and a fast-mobile state. Thus, DynA is most likely freely diffusive within the cytosol, moves along the cell membrane with a low mobility, and arrests at division sites or at stress-induced lesions at the membrane. In response to stress-inducing membrane leakage, but not to general stress, DynA molecules become slightly more static, but largely retain their mobility, suggesting that only few molecules are involved in the repair of membrane lesions, while most molecules remain in a dynamic mode scanning for lesions. Our data suggest that even moderate changes in single molecule dynamics can lead to visible changes in protein localization patterns.","PeriodicalId":18457,"journal":{"name":"Microbial Physiology","volume":"32 1","pages":"57 - 70"},"PeriodicalIF":3.9,"publicationDate":"2022-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43465794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Heterogeneity of Subcellular Diffusion in Bacteria Based on Spatial Segregation of Ribosomes and Nucleoids.","authors":"Simon Dersch, Daniel A O Rotter, Peter L Graumann","doi":"10.1159/000526846","DOIUrl":"https://doi.org/10.1159/000526846","url":null,"abstract":"<p><p>It has long become clear that in spite of generally lacking internal membrane systems, bacteria contain well-structured subcellular structures of usually filamentous proteins, and a preferred 3D arrangement of their chromosome(s). Some of these systems are set up by so-called cytoskeletal elements, or by polar landmark proteins, but the mechanism of specific localization is still unclear in most cases. Intriguingly, apart from such spatially organizing systems, the bacterial cytoplasm has unusual properties in terms of the diffusion of molecules, which varies between different sites within the cell. In many bacteria, chromosomes are compacted into centrally located nucleoids, being orderly folded as opposed to consisting of random coils of DNA. In these bacteria, there is a separation of transcription and translation, such that transcription by RNA polymerase occurs on the nucleoids, and translation takes place mostly at the cell poles and directly underneath the cell membrane, because 70S ribosomes accumulate at sites surrounding the nucleoids. Interestingly, accumulation of ribosomes appears to slow down diffusion of enzymes, noticeable for larger enzyme complexes, while nucleoids provide areas of confined motion for DNA-binding proteins, yet acceleration zones for non-DNA-binding proteins. Crowded regions at the cell poles set up zones of higher concentration of the translation machinery, shortening diffusion distances for rate-limiting translation factor/ribosome interactions, and of metabolic enzymes, possibly speeding up pathways containing low concentrations of metabolites. Thus, heterogeneous diffusion adds another layer of subcellular organization on top of cytoskeletal elements.</p>","PeriodicalId":18457,"journal":{"name":"Microbial Physiology","volume":"32 5-6","pages":"177-186"},"PeriodicalIF":3.9,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9827431/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10516041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daniel Tyler, Kevin J Hendargo, Arturo Medrano-Soto, Milton H Saier
{"title":"Discovery and Characterization of the Phospholemman/SIMP/Viroporin Superfamily.","authors":"Daniel Tyler, Kevin J Hendargo, Arturo Medrano-Soto, Milton H Saier","doi":"10.1159/000521947","DOIUrl":"https://doi.org/10.1159/000521947","url":null,"abstract":"Using bioinformatic approaches, we present evidence of distant relatedness among the Ephemerovirus Viroporin family, the Rhabdoviridae Putative Viroporin U5 family, the Phospholemman family, and the Small Integral Membrane Protein family. Our approach is based on the transitivity property of homology complemented with five validation criteria: (1) significant sequence similarity and alignment coverage, (2) compatibility of topology of transmembrane segments, (3) overlap of hydropathy profiles, (4) conservation of protein domains, and (5) conservation of sequence motifs. Our results indicate that Pfam protein domains PF02038 and PF15831 can be found in or projected onto members of all four families. In addition, we identified a 26-residue motif conserved across the superfamily. This motif is characterized by hydrophobic residues that help anchor the protein to the membrane and charged residues that constitute phosphorylation sites. In addition, all members of the four families with annotated function are either responsible for or affect the transport of ions into and/or out of the cell. Taken together, these results justify the creation of the novel Phospholemman/SIMP/Viroporin superfamily. Given that transport proteins can be found not just in cells, but also in viruses, the ability to relate viroporin protein families with their eukaryotic and bacterial counterparts is an important development in this superfamily.","PeriodicalId":18457,"journal":{"name":"Microbial Physiology","volume":"32 3-4","pages":"83-94"},"PeriodicalIF":3.9,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9355910/pdf/nihms-1773163.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10748046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comparative Analyses of the Transport Proteins Encoded within the Genomes of nine Bifidobacterium Species.","authors":"Hassan Zafar, Milton H Saier","doi":"10.1159/000518954","DOIUrl":"https://doi.org/10.1159/000518954","url":null,"abstract":"<p><p>The human microbiome influences human health in both negative and positive ways. Studies on the transportomes of these organisms yield information that may be utilized for various purposes, including the identification of novel drug targets and the manufacture of improved probiotic strains. Moreover, these genomic analyses help to improve our understanding of the physiology and metabolic capabilities of these organisms. The present study is a continuation of our studies on the transport proteins of the major gut microbes. Bifidobacterium species are essential members of the human gut microbiome, and they initiate colonization of the gut at birth, providing health benefits that last a lifetime. In this study we analyze the transportomes of nine bifidobacterial species: B. adolescentis, B. animalis, B. bifidum, B. breve, B. catenulatum, B. dentium, B. longum subsp. infantis, B. longum subsp. longum, and B. pseudocatenulatum. All of these species have proven probiotic characteristics and exert beneficial effects on human health. Surprisingly, we found that all nine of these species have similar pore-forming toxins and drug exporters that may play roles in pathogenesis. These species have transporters for amino acids, carbohydrates, and proteins, essential for their organismal lifestyles and adaption to their respective ecological niches. The strictly probiotic species, B. bifidum, however, contains fewer such transporters, thus indicative of limited interactions with host cells and other gut microbial counterparts. The results of this study were compared with those of our previous studies on the transportomes of multiple species of Bacteroides, Escherichia coli/Salmonella, and Lactobacillus. Overall, bifidobacteria have larger transportomes (based on percentages of total proteins) than the previously examined groups of bacterial species, with a preference for primary active transport systems over secondary carriers. Taken together, these results provide useful information about the physiologies and pathogenic potentials of these probiotic organisms as reflected by their transportomes.</p>","PeriodicalId":18457,"journal":{"name":"Microbial Physiology","volume":"32 1-2","pages":"30-44"},"PeriodicalIF":3.9,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8940750/pdf/nihms-1740931.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10804740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vanessa Schnaars, Lars Wöhlbrand, Sabine Scheve, Christina Hinrichs, Richard Reinhardt, Ralf Rabus
{"title":"Proteogenomic Insights into the Physiology of Marine, Sulfate-Reducing, Filamentous Desulfonema limicola and Desulfonema magnum.","authors":"Vanessa Schnaars, Lars Wöhlbrand, Sabine Scheve, Christina Hinrichs, Richard Reinhardt, Ralf Rabus","doi":"10.1159/000513383","DOIUrl":"10.1159/000513383","url":null,"abstract":"<p><p>The genus Desulfonema belongs to the deltaproteobacterial family Desulfobacteraceae and comprises marine, sulfate-reducing bacteria that form filaments and move by gliding. This study reports on the complete, manually annotated genomes of Dn. limicola 5ac10T (6.91 Mbp; 6,207 CDS) and Dn. magnum 4be13T (8.03 Mbp; 9,970 CDS), integrated with substrate-specific proteome profiles (8 vs. 11). The richness in mobile genetic elements is shared with other Desulfobacteraceae members, corroborating horizontal gene transfer as major driver in shaping the genomes of this family. The catabolic networks of Dn. limicola and Dn. magnum have the following general characteristics: 98 versus 145 genes assigned (having genomic shares of 1.7 vs. 2.2%), 92.5 versus 89.7% proteomic coverage, and scattered gene clusters for substrate degradation and energy metabolism. The Dn. magnum typifying capacity for aromatic compound degradation (e.g., p-cresol, 3-phenylpropionate) requires 48 genes organized in operon-like structures (87.7% proteomic coverage; no homologs in Dn. limicola). The protein complements for aliphatic compound degradation, central pathways, and energy metabolism are highly similar between both genomes and were identified to a large extent (69-96%). The differential protein profiles revealed a high degree of substrate-specificity for peripheral reaction sequences (forming central intermediates), agreeing with the high number of sensory/regulatory proteins predicted for both strains. By contrast, central pathways and modules of the energy metabolism were constitutively formed under the tested substrate conditions. In accord with their natural habitats that are subject to fluctuating changes of physicochemical parameters, both Desulfonema strains are well equipped to cope with various stress conditions. Next to superoxide dismutase and catalase also desulfoferredoxin and rubredoxin oxidoreductase are formed to counter exposure to molecular oxygen. A variety of proteases and chaperones were detected that function in maintaining cellular homeostasis upon heat or cold shock. Furthermore, glycine betaine/proline betaine transport systems can respond to hyperosmotic stress. Gliding movement probably relies on twitching motility via type-IV pili or adventurous motility. Taken together, this proteogenomic study demonstrates the adaptability of Dn. limicola and Dn. magnum to its dynamic habitats by means of flexible catabolism and extensive stress response capacities.</p>","PeriodicalId":18457,"journal":{"name":"Microbial Physiology","volume":" ","pages":"1-20"},"PeriodicalIF":3.9,"publicationDate":"2021-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8315694/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25388770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Microbial PhysiologyPub Date : 2021-01-01Epub Date: 2021-05-12DOI: 10.1159/000515617
Moritz Koch, Karl Forchhammer
{"title":"Polyhydroxybutyrate: A Useful Product of Chlorotic Cyanobacteria.","authors":"Moritz Koch, Karl Forchhammer","doi":"10.1159/000515617","DOIUrl":"https://doi.org/10.1159/000515617","url":null,"abstract":"<p><p>Polyhydroxybutyrate (PHB) is a carbon polymer with diverse functions, varying greatly on the organism producing it. This microreview describes the current knowledge about PHB metabolism, structure, and different physiological roles with a special focus on cyanobacteria. Despite the physiological function of PHB in the cyanobacterial phylum still being unknown, these organisms provide the unique opportunity to directly convert atmospheric CO2 into bioplastic using a solar-based process. Recent research on PHB metabolism in the cyanobacterial model organism Synechocystis revealed a sophisticated control of PHB granule formation. Novel insights about the metabolic background of PHB synthesis resulted in the engineering of the first cyanobacterial superproducer strain.</p>","PeriodicalId":18457,"journal":{"name":"Microbial Physiology","volume":"31 2","pages":"67-77"},"PeriodicalIF":3.9,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000515617","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38904779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}