Methods in cell biologyPub Date : 2025-01-01Epub Date: 2025-02-13DOI: 10.1016/bs.mcb.2025.01.010
Shih-Chun Shen, James B DuHadaway, Arpital Mondal, Souvik Dey, Alexander J Muller
{"title":"Matrigel implants embedded with IDVCs (IDO1-dependent vascularizing cells) to study inflammatory neovascularization.","authors":"Shih-Chun Shen, James B DuHadaway, Arpital Mondal, Souvik Dey, Alexander J Muller","doi":"10.1016/bs.mcb.2025.01.010","DOIUrl":"https://doi.org/10.1016/bs.mcb.2025.01.010","url":null,"abstract":"<p><p>The pathological expansion of immature blood vessels through neovascularization contributes to the development of a variety of diseases. In cancer, neovascularization supports tumor outgrowth and influences how tumors respond to therapy. Our studies have revealed that a defined cell population termed IDVCs (IDO1-dependent vascularizing cells) expressing the tryptophan catabolizing enzyme IDO1 (indoleamine 2,3-dioxygenase 1) can foster a local inflammatory environment that promotes neovascularization. A powerful tool for investigating the biological role of isolated IDVCs in this inflammatory neovascularization process has been the Matrigel plug assay. In this assay, isolated cells are incorporated into a subcutaneously implanted Matrigel plug which is subsequently evaluated by confocal immunofluorescence microscopy for blood vessel density. We have employed this assay to demonstrate that isolated IDVCs are capable of promoting local neovascularization in an IDO1-dependent manner. Furthermore, the use of genetically engineered mouse strains and pharmacological interventions has enabled us to carry out in-depth investigations into IDO1's function as a nodal modifier of the local inflammatory environment responsible for eliciting a shift in the cytokine milieu from a neovasculature-restrictive to a neovasculature-sustaining status. Here we present a detailed methodology describing the reagents and procedures developed to isolate IDVCs and perform quantitative neovascularization studies. This assay should have great utility as a means for conducting investigative studies delving into the cellular and molecular processes involved in the complex interplay between inflammation and neovascularization.</p>","PeriodicalId":18437,"journal":{"name":"Methods in cell biology","volume":"196 ","pages":"251-270"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144667972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Methods in cell biologyPub Date : 2025-01-01Epub Date: 2025-02-18DOI: 10.1016/bs.mcb.2025.01.006
Apple Hui Min Tay, Andreas Lundqvist
{"title":"Relative adenosine production assay suitable for 2D and 3D tumor cell culture.","authors":"Apple Hui Min Tay, Andreas Lundqvist","doi":"10.1016/bs.mcb.2025.01.006","DOIUrl":"https://doi.org/10.1016/bs.mcb.2025.01.006","url":null,"abstract":"<p><p>Adenosine (ADO), an anti-inflammatory and immunosuppressive metabolite, plays a crucial role in mediating purinergic signaling alongside adenosine triphosphate (ATP) and adenosine monophosphate (AMP) within the tumor microenvironment. Dysregulated ADO signaling has been implicated in tumor immune evasion and progression, highlighting the importance of measuring ADO production. This method chapter presents a protocol for assessing ADO levels in both two- and three- dimensional tumor cell culture conditions. The protocol employs a competitive AMP blockade strategy, where excessive AMP is introduced to inhibit CD73-mediated conversion of AMP to ADO, enabling the quantification of relative ADO production. Given ADO's potent immunosuppressive properties and its influence on various immune responses, accurate measurement of ADO production is crucial for understanding its role in tumor immune evasion and for guiding the development of targeted immunotherapeutic strategies.</p>","PeriodicalId":18437,"journal":{"name":"Methods in cell biology","volume":"196 ","pages":"171-176"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144667977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Methods in cell biologyPub Date : 2025-01-01Epub Date: 2024-04-18DOI: 10.1016/bs.mcb.2024.03.010
Yaiza Senent, Ana Remírez, Beatriz Tavira, Daniel Ajona
{"title":"A mouse model to assess immunotherapy-related colitis.","authors":"Yaiza Senent, Ana Remírez, Beatriz Tavira, Daniel Ajona","doi":"10.1016/bs.mcb.2024.03.010","DOIUrl":"10.1016/bs.mcb.2024.03.010","url":null,"abstract":"<p><p>Combined blockade of the immune checkpoints PD-1 and CTLA-4 has shown remarkable efficacy in patients with melanoma, renal cell carcinoma, non-small-cell lung cancer and mesothelioma, among other tumor types. However, a proportion of patients suffer from serious immune-related adverse events (irAEs). In severe cases, a reduction of the doses or the complete cessation of the treatment is required, limiting the antitumor efficacy of these treatments. Colitis is among the most frequent and problematic irAE associated with immune checkpoint blockade. In this context, animal models that recapitulate the pathophysiological features of immunotherapy-related colitis are needed. In this manuscript, we describe our experience with a mouse model in which the combined CTLA-4 and PD-1 blockade exacerbates the deleterious effects of dextran sulfate sodium (DSS)-induced colitis. This model may constitute a valuable tool for the study of immunotherapy-related colitis.</p>","PeriodicalId":18437,"journal":{"name":"Methods in cell biology","volume":"192 ","pages":"33-38"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143039665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Methods in cell biologyPub Date : 2025-01-01Epub Date: 2024-06-17DOI: 10.1016/bs.mcb.2024.05.013
Clara Diaz Garcia-Prada, Salima Atis, Jean-Pierre Pouget, Julie Constanzo
{"title":"Development of an in vivo ovarian cancer peritoneal carcinomatosis model for radioimmunotherapy testing.","authors":"Clara Diaz Garcia-Prada, Salima Atis, Jean-Pierre Pouget, Julie Constanzo","doi":"10.1016/bs.mcb.2024.05.013","DOIUrl":"10.1016/bs.mcb.2024.05.013","url":null,"abstract":"<p><p>Currently, Ovarian Cancer (OC) is the most lethal gynecological malignancy. In most patients, it progresses without clinical signs or symptoms, leading to a late diagnosis when it has already spread in the peritoneal cavity as peritoneal carcinomatosis (PC). To date, OC PC management is based on cytoreductive surgery to remove the macroscopic disease, followed by chemotherapy. Many patients respond to this treatment, but disease recurs in 70-90% of them. Therefore, new therapeutic approaches are needed. The field of targeted radionuclide therapy (TRT) has witnessed considerable progress and several radiopharmaceuticals have been approved in the last decade. In TRT, radiolabeled molecules are injected to specifically recognize, irradiate, and kill tumor cells. TRT is a multisite radiotherapy that delivers dose to all malignant lesions. Therefore, TRT could be an alternative approach for OC PC because conventional external beam radiotherapy cannot be used at curative dose due to toxicity to healthy tissues. Here, we describe an OC PC model based on grafting human SK-OV-3 OC cells in the peritoneal cavity of immunodeficient mice. We also explain how to label trastuzumab with lutetium-177 to specifically target and irradiate SK-OV-3 cell nodules in these mice, and how to monitor the response to this TRT in vivo. With minor variations, the same technique can be conveniently applied to a variety of human (or mouse) tumors.</p>","PeriodicalId":18437,"journal":{"name":"Methods in cell biology","volume":"192 ","pages":"131-157"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143039848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Methods in cell biologyPub Date : 2025-01-01Epub Date: 2024-04-18DOI: 10.1016/bs.mcb.2024.03.009
Baban Thawkar, Ginpreet Kaur
{"title":"The current models unravel the molecular mechanisms underlying the intricate pathophysiology of Alzheimer's disease using zebrafish.","authors":"Baban Thawkar, Ginpreet Kaur","doi":"10.1016/bs.mcb.2024.03.009","DOIUrl":"10.1016/bs.mcb.2024.03.009","url":null,"abstract":"<p><p>The foremost cause of dementia is Alzheimer's disease (AD). The vital pathological hallmarks of AD are amyloid beta (Aβ) peptide and hyperphosphorylated tau (p-tau) protein. The current animal models used in AD research do not precisely replicate disease pathophysiology, making it difficult for researchers to quickly and effectively gather data or screen potential therapy possibilities. Several transgenic animals are used as models for AD; however, they have cost and time concerns. Zebrafish (Danio rerio) has become a suitable model organism for high-throughput pharmacological screening of neuroactive substances and neurodegenerative research. The past few decades have seen a significant increase in research on AD. The fight against amyloidosis has, however, been unexpectedly unsuccessful. It may be due to a need for more relevant in vivo models for high throughput screening, which emphasizes the need to find other anti-AD models. Alternative animal models, including zebrafish, have developed into a potentially useful research tool that must be employed for AD research to be effective. Only a few comprehensive zebrafish models exhibiting AD-like pathogenesis have been reported in the literature, and this book chapter describes these models.</p>","PeriodicalId":18437,"journal":{"name":"Methods in cell biology","volume":"192 ","pages":"17-31"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143039913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Methods in cell biologyPub Date : 2025-01-01Epub Date: 2025-02-09DOI: 10.1016/bs.mcb.2025.01.009
Adriana Rosa Gambardella, Valentina Tirelli, Sara Andreone, Jacopo Mancini, Fabrizio Mattei, Giovanna Schiavoni
{"title":"Combined in vitro differentiation and cell sorting-based isolation of highly pure mouse bone marrow-derived basophils.","authors":"Adriana Rosa Gambardella, Valentina Tirelli, Sara Andreone, Jacopo Mancini, Fabrizio Mattei, Giovanna Schiavoni","doi":"10.1016/bs.mcb.2025.01.009","DOIUrl":"https://doi.org/10.1016/bs.mcb.2025.01.009","url":null,"abstract":"<p><p>Basophils constitute a rare population of granulocytes with key functions in allergies, immunodeficiencies and cancer. The scarcity of basophils in human blood and tissues constitutes a considerable limit for the study of these cells. Interleukin-3 (IL-3) stimulates both the differentiation and the expansion of basophils from bone marrow (BM) precursors by positively regulating the expression of the IL3Ra receptor. We have standardized an in vitro differentiation protocol of mouse basophils (mBaso) from BM precursors through culture in presence of IL-3 for 10 days followed by cell sorting. At the end of the 10-day differentiation, a considerable number of mBaso can be obtained and cell sorting procedures further improved the isolation of an extraordinarily pure (>98 %) and vital FcεR1<sup>+</sup> CD11c<sup>-</sup> c-kit<sup>-</sup> mBaso population. Phenotypic analysis of terminally differentiated (day 10) unsorted mBaso cultured for 24 h showed a decrease in basophilic lineage (c-kit<sup>-</sup>) and an increase of mastocytic lineage (c-kit<sup>+</sup>) and reduced the expression of basophil markers FcεRI, CD49b and CD200R either in absence of stimuli or following activation with the alarmin IL-33, indicating cell dedifferentiation. In contrast, terminally differentiated and FcεR1<sup>+</sup> CD11c<sup>-</sup> c-kit<sup>-</sup> sorted mBaso do not dedifferentiate in mast cells when placed in culture, and responded to IL-33 stimulation by up-regulating the activation marker CD63 without down-modulation of FcεRI and CD200R3. These evidences highlight that in vitro differentiation followed by cell sorting is a useful method to obtain elevated numbers of highly pure mBaso that preserve their lineage markers and thus are suitable for conducting the desired functional studies.</p>","PeriodicalId":18437,"journal":{"name":"Methods in cell biology","volume":"196 ","pages":"193-208"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144667963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Methods in cell biologyPub Date : 2025-01-01Epub Date: 2024-11-21DOI: 10.1016/bs.mcb.2024.10.003
Varsha Gadiyar, David C Calianese, Rachael Pulica, Christopher Varsanyi, Ziren Wang, Ahmed Aquib, Alok Choudhary, Raymond B Birge
{"title":"Expression, purification and characterization of phosphatidylserine-targeting antibodies for biochemical and therapeutic applications.","authors":"Varsha Gadiyar, David C Calianese, Rachael Pulica, Christopher Varsanyi, Ziren Wang, Ahmed Aquib, Alok Choudhary, Raymond B Birge","doi":"10.1016/bs.mcb.2024.10.003","DOIUrl":"10.1016/bs.mcb.2024.10.003","url":null,"abstract":"<p><p>The externalization of Phosphatidylserine (PS) from the inner surface of the plasma membrane to the outer surface of the plasma membrane is an emblematic event during apoptosis and serves as a potent \"eat-me\" signal for the efferocytosis of apoptotic cells. Although less well understood, PS is also externalized on live cells in the tumor microenvironment and on live virus-infected cells whereby it serves as an immune modulatory signal that drives tolerance and immune escape. Given the importance of PS in cancer immunology and immune escape, PS-targeting monoclonal antibodies have been characterized with promising immunotherapeutic potential. Here, we describe the cloning and characterization of a series of PS targeting antibodies and their potential use and utility in immuno-oncology.</p>","PeriodicalId":18437,"journal":{"name":"Methods in cell biology","volume":"191 ","pages":"15-40"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143008118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Methods in cell biologyPub Date : 2025-01-01Epub Date: 2024-11-19DOI: 10.1016/bs.mcb.2024.10.008
Noor A M Bakker, Claudia Burrello, Karin E de Visser
{"title":"Ex vivo assessment of human neutrophil motility and migration.","authors":"Noor A M Bakker, Claudia Burrello, Karin E de Visser","doi":"10.1016/bs.mcb.2024.10.008","DOIUrl":"10.1016/bs.mcb.2024.10.008","url":null,"abstract":"<p><p>Neutrophils are pivotal in orchestrating tumor-induced systemic inflammation and are increasingly recognized for their critical involvement in both the initiation and progression of cancer. A fundamental facet of neutrophil biology is their migratory capacity, which enables them to extravasate and infiltrate tumors in other tissues, where they carry out essential effector functions. Unraveling the intricate mechanisms of neutrophil motility and migration is crucial for comprehending immune responses and inflammatory processes, shedding light on their substantial contribution to cancer progression. Here, we provide a comprehensive protocol to assess direct ex vivo motility and migration of freshly isolated human neutrophils, offering valuable insights into their behavior.</p>","PeriodicalId":18437,"journal":{"name":"Methods in cell biology","volume":"191 ","pages":"115-133"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143008115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Methods in cell biologyPub Date : 2025-01-01Epub Date: 2024-11-19DOI: 10.1016/bs.mcb.2024.10.004
Silvia Santopolo, Cecilia Ciancaglini, Francesca Romana Mariotti, Lorenzo Moretta, Linda Quatrini
{"title":"In vitro ILC differentiation from human HSCs.","authors":"Silvia Santopolo, Cecilia Ciancaglini, Francesca Romana Mariotti, Lorenzo Moretta, Linda Quatrini","doi":"10.1016/bs.mcb.2024.10.004","DOIUrl":"10.1016/bs.mcb.2024.10.004","url":null,"abstract":"<p><p>The Innate Lymphoid Cells (ILCs) are a family of innate immune cells composed by the Natural Killer (NK) cells and the helper ILCs (hILCs) (ILC1, ILC2, ILC3), both developing from a common ILC precursor (ILCP) derived from hematopoietic stem cells (HSCs). A correct ILC reconstitution is crucial, particularly in patients receiving HSC transplantation (HSCT), the only therapeutic option for many adult and pediatric high-risk hematological malignancies. Indeed, mainly thanks to their cytotoxic activity, NK cells have a strong Graft-versus-Leukemia (GvL) effect. On the other hand, hILCs, that are mainly tissue resident, are involved in tissue repair and homeostasis, Graft-versus-Host Disease (GvHD) prevention and immune response to infections. Unlike NK cell development, hILC-poiesis is still poorly characterized in humans. Here, we provide a protocol for the in vitro ILC differentiation from healthy donor peripheral blood-derived CD34<sup>+</sup> HSCs. This could represent a useful model to dissect the molecular mechanisms by which the distinct ILC subsets are generated from ILCP leading to the development of novel strategies to improve the HSCT clinical outcome.</p>","PeriodicalId":18437,"journal":{"name":"Methods in cell biology","volume":"191 ","pages":"41-57"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143008130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Methods in cell biologyPub Date : 2025-01-01Epub Date: 2024-11-19DOI: 10.1016/bs.mcb.2024.10.017
Sophia Stock, Luisa Fertig, Vivien Doreen Menkhoff, Thaddäus Strzalkowski, Manuel Caruso, Sebastian Kobold
{"title":"Retrovirus-based manufacturing of chimeric antigen receptor-modified T cells for cancer therapy research.","authors":"Sophia Stock, Luisa Fertig, Vivien Doreen Menkhoff, Thaddäus Strzalkowski, Manuel Caruso, Sebastian Kobold","doi":"10.1016/bs.mcb.2024.10.017","DOIUrl":"10.1016/bs.mcb.2024.10.017","url":null,"abstract":"<p><p>Treatment with autologous chimeric antigen receptor (CAR)-modified T cells can achieve outstanding clinical response rates in heavily pretreated patients with B and plasma cell malignancies. However, relapses occur, and they limit the efficacy of this promising treatment approach. The complex GMP-compliant production and high treatment costs cause that CAR T cells cannot yet be used in a broad population. Among others, CAR T cell therapy has evolved regarding vector design and manufacturing process. Optimal production of CAR T cells is not yet defined, far from being standardized. Quality, cellular composition and immunophenotype of the administered CAR T cells are influenced by the manufacturing protocol and therefore play a crucial role for therapeutic success. For the gene transfer, viral and non-viral strategies are available. Retrovirus-based protocols for CAR T cell production offer advantages in terms of stable gene integration, sufficient transduction efficiency, proven clinical success, and scalability. Here, we detail a retrovirus-based generation protocol of human CAR-modified T cells for experimental immunotherapeutic treatment of cancer cells. For the CAR generation, HEK-293-based packaging cell lines, CD3<sup>+</sup> selection, CD3/CD28-coated bead-based activation and IL-2/IL-15-mediated expansion were used. This protocol can be applied for every possible CAR construct after being successfully transfected in HEK-293-based packaging cell lines.</p>","PeriodicalId":18437,"journal":{"name":"Methods in cell biology","volume":"191 ","pages":"329-352"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143008161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}