{"title":"Practical approaches to advanced molecular biology techniques.","authors":"Yakhlesh Gupta, Kunzang Chosdol","doi":"10.1016/bs.mcb.2025.02.022","DOIUrl":null,"url":null,"abstract":"<p><p>The field of molecular biology has undergone tremendous advancements in recent years, with the development of powerful techniques that allow for in-depth exploration of cellular processes at the molecular level. This chapter, \"Advanced Molecular Biology Techniques,\" provides a detailed protocol of the molecular techniques. We begin with CRISPR-Cas9 genome editing, a transformative tool for precise and efficient gene manipulation, enabling targeted mutations and gene knockouts in various organisms. Gene amplification via Real-Time PCR is then discussed, highlighting its ability to quantify gene expression and detect rare genetic variants with high sensitivity. Flowcytometry follows, offering a robust platform for analyzing cellular populations based on specific markers, enabling the study of immune cells, cancer diagnostics, and cell cycle analysis. Chromatin Immunoprecipitation Sequencing (ChIP-Seq) is explored as a method for mapping protein-DNA interactions, providing insights into gene regulation and epigenetic modifications. The chapter also covers Single-cell RNA sequencing (scRNA-Seq), a groundbreaking technique for profiling gene expression at the single-cell level, allowing for the discovery of cell heterogeneity and complex biological processes. Next, we explore into proteomics through Mass Spectrometry-Based Analysis, which offers detailed proteome characterization and biomarker discovery by identifying and quantifying proteins in complex samples. Finally, Fluorescence In Situ Hybridization (FISH) is discussed as a method for visualizing the spatial localization of specific nucleic acid sequences within intact cells or tissues. Together, these advanced molecular biology techniques offer unparalleled precision and insight into the molecular mechanisms underlying health, disease, and cellular function.</p>","PeriodicalId":18437,"journal":{"name":"Methods in cell biology","volume":"198 ","pages":"73-101"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in cell biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.mcb.2025.02.022","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/13 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
The field of molecular biology has undergone tremendous advancements in recent years, with the development of powerful techniques that allow for in-depth exploration of cellular processes at the molecular level. This chapter, "Advanced Molecular Biology Techniques," provides a detailed protocol of the molecular techniques. We begin with CRISPR-Cas9 genome editing, a transformative tool for precise and efficient gene manipulation, enabling targeted mutations and gene knockouts in various organisms. Gene amplification via Real-Time PCR is then discussed, highlighting its ability to quantify gene expression and detect rare genetic variants with high sensitivity. Flowcytometry follows, offering a robust platform for analyzing cellular populations based on specific markers, enabling the study of immune cells, cancer diagnostics, and cell cycle analysis. Chromatin Immunoprecipitation Sequencing (ChIP-Seq) is explored as a method for mapping protein-DNA interactions, providing insights into gene regulation and epigenetic modifications. The chapter also covers Single-cell RNA sequencing (scRNA-Seq), a groundbreaking technique for profiling gene expression at the single-cell level, allowing for the discovery of cell heterogeneity and complex biological processes. Next, we explore into proteomics through Mass Spectrometry-Based Analysis, which offers detailed proteome characterization and biomarker discovery by identifying and quantifying proteins in complex samples. Finally, Fluorescence In Situ Hybridization (FISH) is discussed as a method for visualizing the spatial localization of specific nucleic acid sequences within intact cells or tissues. Together, these advanced molecular biology techniques offer unparalleled precision and insight into the molecular mechanisms underlying health, disease, and cellular function.
期刊介绍:
For over fifty years, Methods in Cell Biology has helped researchers answer the question "What method should I use to study this cell biology problem?" Edited by leaders in the field, each thematic volume provides proven, state-of-art techniques, along with relevant historical background and theory, to aid researchers in efficient design and effective implementation of experimental methodologies. Over its many years of publication, Methods in Cell Biology has built up a deep library of biological methods to study model developmental organisms, organelles and cell systems, as well as comprehensive coverage of microscopy and other analytical approaches.