Yanyan Wang , Kechen Song , Yuyuan Liu , Shuai Ma , Yunhui Yan , Gustavo Carneiro
{"title":"Leveraging labelled data knowledge: A cooperative rectification learning network for semi-supervised 3D medical image segmentation","authors":"Yanyan Wang , Kechen Song , Yuyuan Liu , Shuai Ma , Yunhui Yan , Gustavo Carneiro","doi":"10.1016/j.media.2025.103461","DOIUrl":"10.1016/j.media.2025.103461","url":null,"abstract":"<div><div>Semi-supervised 3D medical image segmentation aims to achieve accurate segmentation using few labelled data and numerous unlabelled data. The main challenge in the design of semi-supervised learning methods consists in the effective use of the unlabelled data for training. A promising solution consists of ensuring consistent predictions across different views of the data, where the efficacy of this strategy depends on the accuracy of the pseudo-labels generated by the model for this consistency learning strategy. In this paper, we introduce a new methodology to produce high-quality pseudo-labels for a consistency learning strategy to address semi-supervised 3D medical image segmentation. The methodology has three important contributions. The first contribution is the Cooperative Rectification Learning Network (CRLN) that learns multiple prototypes per class to be used as external knowledge priors to adaptively rectify pseudo-labels at the voxel level. The second contribution consists of the Dynamic Interaction Module (DIM) to facilitate pairwise and cross-class interactions between prototypes and multi-resolution image features, enabling the production of accurate voxel-level clues for pseudo-label rectification. The third contribution is the Cooperative Positive Supervision (CPS), which optimises uncertain representations to align with unassertive representations of their class distributions, improving the model’s accuracy in classifying uncertain regions. Extensive experiments on three public 3D medical segmentation datasets demonstrate the effectiveness and superiority of our semi-supervised learning method.</div></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"101 ","pages":"Article 103461"},"PeriodicalIF":10.7,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143035197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sandrine Bédard , Enamundram Naga Karthik , Charidimos Tsagkas , Emanuele Pravatà , Cristina Granziera , Andrew Smith , Kenneth Arnold Weber II , Julien Cohen-Adad
{"title":"Towards contrast-agnostic soft segmentation of the spinal cord","authors":"Sandrine Bédard , Enamundram Naga Karthik , Charidimos Tsagkas , Emanuele Pravatà , Cristina Granziera , Andrew Smith , Kenneth Arnold Weber II , Julien Cohen-Adad","doi":"10.1016/j.media.2025.103473","DOIUrl":"10.1016/j.media.2025.103473","url":null,"abstract":"<div><div>Spinal cord segmentation is clinically relevant and is notably used to compute spinal cord cross-sectional area (CSA) for the diagnosis and monitoring of cord compression or neurodegenerative diseases such as multiple sclerosis. While several semi and automatic methods exist, one key limitation remains: the segmentation depends on the MRI contrast, resulting in different CSA across contrasts. This is partly due to the varying appearance of the boundary between the spinal cord and the cerebrospinal fluid that depends on the sequence and acquisition parameters. This contrast-sensitive CSA adds variability in multi-center studies where protocols can vary, reducing the sensitivity to detect subtle atrophies. Moreover, existing methods enhance the CSA variability by training one model per contrast, while also producing binary masks that do not account for partial volume effects. In this work, we present a deep learning-based method that produces soft segmentations of the spinal cord that are stable across MRI contrasts. Using the Spine Generic Public Database of healthy participants (<span><math><mrow><mtext>n</mtext><mo>=</mo><mn>267</mn></mrow></math></span>; <span><math><mrow><mtext>contrasts</mtext><mo>=</mo><mn>6</mn></mrow></math></span>), we first generated participant-wise soft ground truth (GT) by averaging the binary segmentations across all 6 contrasts. These soft GT, along with aggressive data augmentation and a regression-based loss function, were then used to train a U-Net model for spinal cord segmentation. We evaluated our model against state-of-the-art methods and performed ablation studies involving different GT mask types, loss functions, contrast-specific models and domain generalization methods. Our results show that using the soft average segmentations along with a regression loss function reduces CSA variability (<span><math><mrow><mi>p</mi><mo><</mo><mn>0</mn><mo>.</mo><mn>05</mn></mrow></math></span>, Wilcoxon signed-rank test). The proposed spinal cord segmentation model generalizes better than the state-of-the-art contrast-specific methods amongst unseen datasets, vendors, contrasts, and pathologies (compression, lesions), while accounting for partial volume effects. Our model is integrated into the Spinal Cord Toolbox (v6.2 and higher).</div></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"101 ","pages":"Article 103473"},"PeriodicalIF":10.7,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143059726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Felipe Álvarez-Barrientos , Mariana Salinas-Camus , Simone Pezzuto , Francisco Sahli Costabal
{"title":"Probabilistic learning of the Purkinje network from the electrocardiogram","authors":"Felipe Álvarez-Barrientos , Mariana Salinas-Camus , Simone Pezzuto , Francisco Sahli Costabal","doi":"10.1016/j.media.2025.103460","DOIUrl":"10.1016/j.media.2025.103460","url":null,"abstract":"<div><div>The identification of the Purkinje conduction system in the heart is a challenging task, yet essential for a correct definition of cardiac digital twins for precision cardiology. Here, we propose a probabilistic approach for identifying the Purkinje network from non-invasive clinical data such as the standard electrocardiogram (ECG). We use cardiac imaging to build an anatomically accurate model of the ventricles; we algorithmically generate a rule-based Purkinje network tailored to the anatomy; we simulate physiological electrocardiograms with a fast model; we identify the geometrical and electrical parameters of the Purkinje-ECG model with Bayesian optimization and approximate Bayesian computation. The proposed approach is inherently probabilistic and generates a population of plausible Purkinje networks, all fitting the ECG within a given tolerance. In this way, we can estimate the uncertainty of the parameters, thus providing reliable predictions. We test our methodology in physiological and pathological scenarios, showing that we are able to accurately recover the ECG with our model. We propagate the uncertainty in the Purkinje network parameters in a simulation of conduction system pacing therapy. Our methodology is a step forward in creation of digital twins from non-invasive data in precision medicine. An open source implementation can be found at <span><span>http://github.com/fsahli/purkinje-learning</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"101 ","pages":"Article 103460"},"PeriodicalIF":10.7,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143066469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lei Li , Hannah Smith , Yilin Lyu , Julia Camps , Shuang Qian , Blanca Rodriguez , Abhirup Banerjee , Vicente Grau
{"title":"Personalized topology-informed localization of standard 12-lead ECG electrode placement from incomplete cardiac MRIs for efficient cardiac digital twins","authors":"Lei Li , Hannah Smith , Yilin Lyu , Julia Camps , Shuang Qian , Blanca Rodriguez , Abhirup Banerjee , Vicente Grau","doi":"10.1016/j.media.2025.103472","DOIUrl":"10.1016/j.media.2025.103472","url":null,"abstract":"<div><div>Cardiac digital twins (CDTs) offer personalized <em>in-silico</em> cardiac representations for the inference of multi-scale properties tied to cardiac mechanisms. The creation of CDTs requires precise information about the electrode position on the torso, especially for the personalized electrocardiogram (ECG) calibration. However, current studies commonly rely on additional acquisition of torso imaging and manual/semi-automatic methods for ECG electrode localization. In this study, we propose a novel and efficient topology-informed model to fully automatically extract personalized ECG standard electrode locations from 2D clinically standard cardiac MRIs. Specifically, we obtain the sparse torso contours from the cardiac MRIs and then localize the standard electrodes of 12-lead ECG from the contours. Cardiac MRIs aim at imaging of the heart instead of the torso, leading to incomplete torso geometry within the imaging. To tackle the missing topology, we incorporate the electrodes as a subset of the keypoints, which can be explicitly aligned with the 3D torso topology. The experimental results demonstrate that the proposed model outperforms the time-consuming conventional model projection-based method in terms of accuracy (Euclidean distance: <span><math><mrow><mn>1</mn><mo>.</mo><mn>24</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>293</mn></mrow></math></span> cm vs. <span><math><mrow><mn>1</mn><mo>.</mo><mn>48</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>362</mn></mrow></math></span> cm) and efficiency (2 s vs. 30-35 min). We further demonstrate the effectiveness of using the detected electrodes for <em>in-silico</em> ECG simulation, highlighting their potential for creating accurate and efficient CDT models. The code is available at <span><span>https://github.com/lileitech/12lead_ECG_electrode_localizer</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"101 ","pages":"Article 103472"},"PeriodicalIF":10.7,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143035199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuqian Chen , Fan Zhang , Meng Wang , Leo R. Zekelman , Suheyla Cetin-Karayumak , Tengfei Xue , Chaoyi Zhang , Yang Song , Jarrett Rushmore , Nikos Makris , Yogesh Rathi , Weidong Cai , Lauren J. O'Donnell
{"title":"TractGraphFormer: Anatomically informed hybrid graph CNN-transformer network for interpretable sex and age prediction from diffusion MRI tractography","authors":"Yuqian Chen , Fan Zhang , Meng Wang , Leo R. Zekelman , Suheyla Cetin-Karayumak , Tengfei Xue , Chaoyi Zhang , Yang Song , Jarrett Rushmore , Nikos Makris , Yogesh Rathi , Weidong Cai , Lauren J. O'Donnell","doi":"10.1016/j.media.2025.103476","DOIUrl":"10.1016/j.media.2025.103476","url":null,"abstract":"<div><div>The relationship between brain connections and non-imaging phenotypes is increasingly studied using deep neural networks. However, the local and global properties of the brain's white matter networks are often overlooked in convolutional network design. We introduce TractGraphFormer, a hybrid Graph CNN-Transformer deep learning framework tailored for diffusion MRI tractography. This model leverages local anatomical characteristics and global feature dependencies of white matter structures. The Graph CNN module captures white matter geometry and grey matter connectivity to aggregate local features from anatomically similar white matter connections, while the Transformer module uses self-attention to enhance global information learning. Additionally, TractGraphFormer includes an attention module for interpreting predictive white matter connections. We apply TractGraphFormer to tasks of sex and age prediction. TractGraphFormer shows strong performance in large datasets of children (<em>n</em> = 9345) and young adults (<em>n</em> = 1065). Overall, our approach suggests that widespread connections in the WM are predictive of the sex and age of an individual. For each prediction task, consistent predictive anatomical tracts are identified across the two datasets. The proposed approach highlights the potential of integrating local anatomical information and global feature dependencies to improve prediction performance in machine learning with diffusion MRI tractography.</div></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"101 ","pages":"Article 103476"},"PeriodicalIF":10.7,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143035200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xing Tao , Yan Cao , Yanhui Jiang , Xiaoxi Wu , Dan Yan , Wen Xue , Shulian Zhuang , Xin Yang , Ruobing Huang , Jianxing Zhang , Dong Ni
{"title":"Enhancing lesion detection in automated breast ultrasound using unsupervised multi-view contrastive learning with 3D DETR","authors":"Xing Tao , Yan Cao , Yanhui Jiang , Xiaoxi Wu , Dan Yan , Wen Xue , Shulian Zhuang , Xin Yang , Ruobing Huang , Jianxing Zhang , Dong Ni","doi":"10.1016/j.media.2025.103466","DOIUrl":"10.1016/j.media.2025.103466","url":null,"abstract":"<div><div>The inherent variability of lesions poses challenges in leveraging AI in 3D automated breast ultrasound (ABUS) for lesion detection. Traditional methods based on single scans have fallen short compared to comprehensive evaluations by experienced sonologists using multiple scans. To address this, our study introduces an innovative approach combining the multi-view co-attention mechanism (MCAM) with unsupervised contrastive learning. Rooted in the detection transformer (DETR) architecture, our model employs a one-to-many matching strategy, significantly boosting training efficiency and lesion recall metrics. The model integrates MCAM within the decoder, facilitating the interpretation of lesion data across diverse views. Simultaneously, unsupervised multi-view contrastive learning (UMCL) aligns features consistently across scans, improving detection performance. When tested on two multi-center datasets comprising 1509 patients, our approach outperforms existing state-of-the-art 3D detection models. Notably, our model achieves a 90.3% cancer detection rate with a false positive per image (FPPI) rate of 0.5 on the external validation dataset. This surpasses junior sonologists and matches the performance of seasoned experts.</div></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"101 ","pages":"Article 103466"},"PeriodicalIF":10.7,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143035198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Benefit from public unlabeled data: A Frangi filter-based pretraining network for 3D cerebrovascular segmentation","authors":"Gen Shi , Hao Lu , Hui Hui , Jie Tian","doi":"10.1016/j.media.2024.103442","DOIUrl":"10.1016/j.media.2024.103442","url":null,"abstract":"<div><div>Precise cerebrovascular segmentation in Time-of-Flight Magnetic Resonance Angiography (TOF-MRA) data is crucial for computer-aided clinical diagnosis. The sparse distribution of cerebrovascular structures within TOF-MRA images often results in high costs for manual data labeling. Leveraging unlabeled TOF-MRA data can significantly enhance model performance. In this study, we have constructed the largest preprocessed unlabeled TOF-MRA dataset to date, comprising 1510 subjects. Additionally, we provide manually annotated segmentation masks for 113 subjects based on existing external image datasets to facilitate evaluation. We propose a simple yet effective pretraining strategy utilizing the Frangi filter, known for its capability to enhance vessel-like structures, to optimize the use of the unlabeled data for 3D cerebrovascular segmentation. This involves a Frangi filter-based preprocessing workflow tailored for large-scale unlabeled datasets and a multi-task pretraining strategy to efficiently utilize the preprocessed data. This approach ensures maximal extraction of useful knowledge from the unlabeled data. The efficacy of the pretrained model is assessed across four cerebrovascular segmentation datasets, where it demonstrates superior performance, improving the clDice metric by approximately 2%–3% compared to the latest semi- and self-supervised methods. Additionally, ablation studies validate the generalizability and effectiveness of our pretraining method across various backbone structures. The code and data have been open source at: <span><span>https://github.com/shigen-StoneRoot/FFPN</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"101 ","pages":"Article 103442"},"PeriodicalIF":10.7,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143008076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Identifying multilayer network hub by graph representation learning","authors":"Defu Yang , Minjeong Kim , Yu Zhang , Guorong Wu","doi":"10.1016/j.media.2025.103463","DOIUrl":"10.1016/j.media.2025.103463","url":null,"abstract":"<div><div>The recent advances in neuroimaging technology allow us to understand how the human brain is wired in vivo and how functional activity is synchronized across multiple regions. Growing evidence shows that the complexity of the functional connectivity is far beyond the widely used mono-layer network. Indeed, the hierarchical processing information among distinct brain regions and across multiple channels requires using a more advanced multilayer model to understand the synchronization across the brain that underlies functional brain networks. However, the principled approach for characterizing network organization in the context of multilayer topologies is largely unexplored. In this work, we present a novel multi-variate hub identification method that takes both the intra- and inter-layer network topologies into account. Specifically, we put the spotlight on the multilayer graph embeddings that allow us to separate connector hubs (connecting across network modules) with their peripheral nodes. The removal of these hub nodes breaks down the entire multilayer brain network into a set of disconnected communities. We have evaluated our novel multilayer hub identification method in task-based and resting-state functional images. Complimenting ongoing findings using mono-layer brain networks, our multilayer network analysis provides a new understanding of brain network topology that links functional connectivities with brain states and disease progression.</div></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"101 ","pages":"Article 103463"},"PeriodicalIF":10.7,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143023985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yunqi Wang , Tianjiao Zeng , Furui Liu , Qi Dou , Peng Cao , Hing-Chiu Chang , Qiao Deng , Edward S. Hui
{"title":"Illuminating the unseen: Advancing MRI domain generalization through causality","authors":"Yunqi Wang , Tianjiao Zeng , Furui Liu , Qi Dou , Peng Cao , Hing-Chiu Chang , Qiao Deng , Edward S. Hui","doi":"10.1016/j.media.2025.103459","DOIUrl":"10.1016/j.media.2025.103459","url":null,"abstract":"<div><div>Deep learning methods have shown promise in accelerated MRI reconstruction but face significant challenges under domain shifts between training and testing datasets, such as changes in image contrasts, anatomical regions, and acquisition strategies. To address these challenges, we present the first domain generalization framework specifically designed for accelerated MRI reconstruction to robustness across unseen domains. The framework employs progressive strategies to enforce domain invariance, starting with image-level fidelity consistency to ensure robust reconstruction quality across domains, and feature alignment to capture domain-invariant representations. Advancing beyond these foundations, we propose a novel approach enforcing mechanism-level invariance, termed GenCA-MRI, which aligns intrinsic causal relationships within MRI data. We further develop a computational strategy that significantly reduces the complexity of causal alignment, ensuring its feasibility for real-world applications. Extensive experiments validate the framework’s effectiveness, demonstrating both numerical and visual improvements over the baseline algorithm. GenCA-MRI presents the overall best performance, achieving a PSNR improvement up to 2.15 dB on fastMRI and 1.24 dB on IXI dataset at 8<span><math><mo>×</mo></math></span> acceleration, with superior performance in preserving anatomical details and mitigating domain-shift problem.</div></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"101 ","pages":"Article 103459"},"PeriodicalIF":10.7,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143395482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jichen Xu , Anqi Dong , Yang Yang , Shuo Jin , Jianping Zeng , Zhengqing Xu , Wei Jiang , Liang Zhang , Jiahong Dong , Bo Wang
{"title":"VSNet: Vessel Structure-aware Network for hepatic and portal vein segmentation","authors":"Jichen Xu , Anqi Dong , Yang Yang , Shuo Jin , Jianping Zeng , Zhengqing Xu , Wei Jiang , Liang Zhang , Jiahong Dong , Bo Wang","doi":"10.1016/j.media.2025.103458","DOIUrl":"10.1016/j.media.2025.103458","url":null,"abstract":"<div><div>Identifying and segmenting hepatic and portal veins (two predominant vascular systems in the liver, from CT scans) play a crucial role for clinicians in preoperative planning for treatment strategies. However, existing segmentation models often struggle to capture fine details of minor veins. In this article, we introduce Vessel Structure-aware Network (VSNet), a multi-task learning model with vessel-growing decoder, to address the challenge. VSNet excels at accurate segmentation by capturing the topological features of both minor veins while preserving correct connectivity from minor vessels to trucks. We also build and publish the largest dataset (303 cases) for hepatic and portal vessel segmentation. Through comprehensive experiments, we demonstrate that VSNet achieves the best Dice for hepatic vein of 0.824 and portal vein of 0.807 on our proposed dataset, significantly outperforming other popular segmentation models. The source code and dataset are publicly available at <span><span>https://github.com/XXYZB/VSNet</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"101 ","pages":"Article 103458"},"PeriodicalIF":10.7,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143101596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}