Long Chen , Mobarak I. Hoque , Zhe Min , Matt Clarkson , Thomas Dowrick
{"title":"可控光照不变GAN用于多种时间一致手术视频合成","authors":"Long Chen , Mobarak I. Hoque , Zhe Min , Matt Clarkson , Thomas Dowrick","doi":"10.1016/j.media.2025.103731","DOIUrl":null,"url":null,"abstract":"<div><div>Surgical video synthesis offers a cost-effective way to expand training data and enhance the performance of machine learning models in computer-assisted surgery. However, existing video translation methods often produce video sequences with large illumination changes across different views, disrupting the temporal consistency of the videos. Additionally, these methods typically synthesize videos with a monotonous style, whereas diverse synthetic data is desired to improve the generalization ability of downstream machine learning models. To address these challenges, we propose a novel Controllable Illumination Invariant Generative Adversarial Network (CIIGAN) for generating diverse, illumination-consistent video sequences. CIIGAN fuses multi-scale illumination-invariant features from a novel controllable illumination-invariant (CII) image space with multi-scale texture-invariant features from self-constructed 3D scenes. The CII image space, along with the 3D scenes, allows CIIGAN to produce diverse and temporally-consistent video or image translations. Extensive experiments demonstrate that CIIGAN achieves more realistic and illumination-consistent translations compared to previous state-of-the-art baselines. Furthermore, the segmentation networks trained on our diverse synthetic data outperform those trained on monotonous synthetic data. Our source code, well-trained models, and 3D simulation scenes are public available at <span><span>https://github.com/LongChenCV/CIIGAN</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"105 ","pages":"Article 103731"},"PeriodicalIF":10.7000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Controllable illumination invariant GAN for diverse temporally-consistent surgical video synthesis\",\"authors\":\"Long Chen , Mobarak I. Hoque , Zhe Min , Matt Clarkson , Thomas Dowrick\",\"doi\":\"10.1016/j.media.2025.103731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Surgical video synthesis offers a cost-effective way to expand training data and enhance the performance of machine learning models in computer-assisted surgery. However, existing video translation methods often produce video sequences with large illumination changes across different views, disrupting the temporal consistency of the videos. Additionally, these methods typically synthesize videos with a monotonous style, whereas diverse synthetic data is desired to improve the generalization ability of downstream machine learning models. To address these challenges, we propose a novel Controllable Illumination Invariant Generative Adversarial Network (CIIGAN) for generating diverse, illumination-consistent video sequences. CIIGAN fuses multi-scale illumination-invariant features from a novel controllable illumination-invariant (CII) image space with multi-scale texture-invariant features from self-constructed 3D scenes. The CII image space, along with the 3D scenes, allows CIIGAN to produce diverse and temporally-consistent video or image translations. Extensive experiments demonstrate that CIIGAN achieves more realistic and illumination-consistent translations compared to previous state-of-the-art baselines. Furthermore, the segmentation networks trained on our diverse synthetic data outperform those trained on monotonous synthetic data. Our source code, well-trained models, and 3D simulation scenes are public available at <span><span>https://github.com/LongChenCV/CIIGAN</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":18328,\"journal\":{\"name\":\"Medical image analysis\",\"volume\":\"105 \",\"pages\":\"Article 103731\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical image analysis\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1361841525002786\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361841525002786","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Controllable illumination invariant GAN for diverse temporally-consistent surgical video synthesis
Surgical video synthesis offers a cost-effective way to expand training data and enhance the performance of machine learning models in computer-assisted surgery. However, existing video translation methods often produce video sequences with large illumination changes across different views, disrupting the temporal consistency of the videos. Additionally, these methods typically synthesize videos with a monotonous style, whereas diverse synthetic data is desired to improve the generalization ability of downstream machine learning models. To address these challenges, we propose a novel Controllable Illumination Invariant Generative Adversarial Network (CIIGAN) for generating diverse, illumination-consistent video sequences. CIIGAN fuses multi-scale illumination-invariant features from a novel controllable illumination-invariant (CII) image space with multi-scale texture-invariant features from self-constructed 3D scenes. The CII image space, along with the 3D scenes, allows CIIGAN to produce diverse and temporally-consistent video or image translations. Extensive experiments demonstrate that CIIGAN achieves more realistic and illumination-consistent translations compared to previous state-of-the-art baselines. Furthermore, the segmentation networks trained on our diverse synthetic data outperform those trained on monotonous synthetic data. Our source code, well-trained models, and 3D simulation scenes are public available at https://github.com/LongChenCV/CIIGAN.
期刊介绍:
Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.