Alvaro Gonzalez-Jimenez , Simone Lionetti , Philippe Gottfrois , Fabian Gröger , Alexander Navarini , Marc Pouly
{"title":"鲁棒T-Loss用于医学图像分割","authors":"Alvaro Gonzalez-Jimenez , Simone Lionetti , Philippe Gottfrois , Fabian Gröger , Alexander Navarini , Marc Pouly","doi":"10.1016/j.media.2025.103735","DOIUrl":null,"url":null,"abstract":"<div><div>This work introduces T-Loss, a novel and robust loss function for medical image segmentation. T-Loss is derived from the negative log-likelihood of the Student-t distribution and excels at handling noisy masks by dynamically controlling its sensitivity through a single parameter. This parameter is optimized during the backpropagation process, obviating the need for additional computations or prior knowledge about the extent and distribution of noisy labels. We provide in-depth analysis of this parameter behavior during training and revealing its adaptive nature and its role in preventing noisy memorization. Our extensive experiments demonstrate that T-Loss significantly outperforms traditional loss functions in terms of dice scores on two public medical datasets, specifically for skin lesion and lung segmentation. Moreover, T-Loss exhibits remarkable resilience to various types of simulated label noise, which mimics human annotation errors. Our results provide strong evidence that T-Loss is a promising alternative for medical image segmentation where high levels of noise or outliers in the dataset are a typical phenomenon in practice. The project website, including code and additional resources, can be found at: <span><span>https://robust-tloss.github.io/</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"105 ","pages":"Article 103735"},"PeriodicalIF":11.8000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust T-Loss for medical image segmentation\",\"authors\":\"Alvaro Gonzalez-Jimenez , Simone Lionetti , Philippe Gottfrois , Fabian Gröger , Alexander Navarini , Marc Pouly\",\"doi\":\"10.1016/j.media.2025.103735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work introduces T-Loss, a novel and robust loss function for medical image segmentation. T-Loss is derived from the negative log-likelihood of the Student-t distribution and excels at handling noisy masks by dynamically controlling its sensitivity through a single parameter. This parameter is optimized during the backpropagation process, obviating the need for additional computations or prior knowledge about the extent and distribution of noisy labels. We provide in-depth analysis of this parameter behavior during training and revealing its adaptive nature and its role in preventing noisy memorization. Our extensive experiments demonstrate that T-Loss significantly outperforms traditional loss functions in terms of dice scores on two public medical datasets, specifically for skin lesion and lung segmentation. Moreover, T-Loss exhibits remarkable resilience to various types of simulated label noise, which mimics human annotation errors. Our results provide strong evidence that T-Loss is a promising alternative for medical image segmentation where high levels of noise or outliers in the dataset are a typical phenomenon in practice. The project website, including code and additional resources, can be found at: <span><span>https://robust-tloss.github.io/</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":18328,\"journal\":{\"name\":\"Medical image analysis\",\"volume\":\"105 \",\"pages\":\"Article 103735\"},\"PeriodicalIF\":11.8000,\"publicationDate\":\"2025-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical image analysis\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1361841525002828\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361841525002828","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
This work introduces T-Loss, a novel and robust loss function for medical image segmentation. T-Loss is derived from the negative log-likelihood of the Student-t distribution and excels at handling noisy masks by dynamically controlling its sensitivity through a single parameter. This parameter is optimized during the backpropagation process, obviating the need for additional computations or prior knowledge about the extent and distribution of noisy labels. We provide in-depth analysis of this parameter behavior during training and revealing its adaptive nature and its role in preventing noisy memorization. Our extensive experiments demonstrate that T-Loss significantly outperforms traditional loss functions in terms of dice scores on two public medical datasets, specifically for skin lesion and lung segmentation. Moreover, T-Loss exhibits remarkable resilience to various types of simulated label noise, which mimics human annotation errors. Our results provide strong evidence that T-Loss is a promising alternative for medical image segmentation where high levels of noise or outliers in the dataset are a typical phenomenon in practice. The project website, including code and additional resources, can be found at: https://robust-tloss.github.io/.
期刊介绍:
Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.