{"title":"A note on Hodge–Tate spectral sequences","authors":"ZHIYOU WU","doi":"10.1017/s0305004124000069","DOIUrl":"https://doi.org/10.1017/s0305004124000069","url":null,"abstract":"We prove that the Hodge–Tate spectral sequence of a proper smooth rigid analytic variety can be reconstructed from its infinitesimal <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0305004124000069_inline1.png\" /> <jats:tex-math> $mathbb{B}_{text{dR}}^+$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-cohomology through the Bialynicki–Birula map. We also give a new proof of the torsion-freeness of the infinitesimal <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0305004124000069_inline2.png\" /> <jats:tex-math> $mathbb{B}_{text{dR}}^+$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-cohomology independent of Conrad–Gabber spreading theorem, and a conceptual explanation that the degeneration of Hodge–Tate spectral sequences is equivalent to that of Hodge–de Rham spectral sequences.","PeriodicalId":18320,"journal":{"name":"Mathematical Proceedings of the Cambridge Philosophical Society","volume":"30 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140197514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The sup-norm problem beyond the newform","authors":"EDGAR ASSING","doi":"10.1017/s0305004124000021","DOIUrl":"https://doi.org/10.1017/s0305004124000021","url":null,"abstract":"<p>In this paper we take up the classical sup-norm problem for automorphic forms and view it from a new angle. Given a twist minimal automorphic representation <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240311161759314-0086:S0305004124000021:S0305004124000021_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$pi$</span></span></img></span></span> we consider a special small <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240311161759314-0086:S0305004124000021:S0305004124000021_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$mathrm{GL}_2(mathbb{Z}_p)$</span></span></img></span></span>-type <span>V</span> in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240311161759314-0086:S0305004124000021:S0305004124000021_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$pi$</span></span></img></span></span> and prove global sup-norm bounds for an average over an orthonormal basis of <span>V</span>. We achieve a non-trivial saving when the dimension of <span>V</span> grows.</p>","PeriodicalId":18320,"journal":{"name":"Mathematical Proceedings of the Cambridge Philosophical Society","volume":"22 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140106381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A bound of the number of weighted blow-ups to compute the minimal log discrepancy for smooth 3-folds","authors":"SHIHOKO ISHII","doi":"10.1017/s030500412400001x","DOIUrl":"https://doi.org/10.1017/s030500412400001x","url":null,"abstract":"We study a pair consisting of a smooth 3-fold defined over an algebraically closed field and a “general” <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S030500412400001X_inline1.png\" /> <jats:tex-math> ${Bbb R}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-ideal. We show that the minimal log discrepancy (“mld” for short) of every such a pair is computed by a prime divisor obtained by at most two weighted blow-ups. This bound is regarded as a weighted blow-up version of Mustaţă–Nakamura’s conjecture. We also show that if the mld of such a pair is not less than 1, then it is computed by at most one weighted blow-up. As a consequence, ACC of mld holds for such pairs.","PeriodicalId":18320,"journal":{"name":"Mathematical Proceedings of the Cambridge Philosophical Society","volume":"5 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140074760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"How to solve a binary cubic equation in integers","authors":"DAVID MASSER","doi":"10.1017/s0305004124000057","DOIUrl":"https://doi.org/10.1017/s0305004124000057","url":null,"abstract":"<p>Given any polynomial in two variables of degree at most three with rational integer coefficients, we obtain a new search bound to decide effectively if it has a zero with rational integer coefficients. On the way we encounter a natural problem of estimating singular points. We solve it using elementary invariant theory but an optimal solution would seem to be far from easy even using the full power of the standard Height Machine.</p>","PeriodicalId":18320,"journal":{"name":"Mathematical Proceedings of the Cambridge Philosophical Society","volume":"66 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140055480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Log Calabi–Yau surfaces and Jeffrey–Kirwan residues","authors":"RICCARDO ONTANI, JACOPO STOPPA","doi":"10.1017/s0305004124000033","DOIUrl":"https://doi.org/10.1017/s0305004124000033","url":null,"abstract":"<p>We prove an equality, predicted in the physical literature, between the Jeffrey–Kirwan residues of certain explicit meromorphic forms attached to a quiver without loops or oriented cycles and its Donaldson–Thomas type invariants.</p><p>In the special case of complete bipartite quivers we also show independently, using scattering diagrams and theta functions, that the same Jeffrey–Kirwan residues are determined by the the Gross–Hacking–Keel mirror family to a log Calabi–Yau surface.</p>","PeriodicalId":18320,"journal":{"name":"Mathematical Proceedings of the Cambridge Philosophical Society","volume":"10 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140026267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The uniform distribution modulo one of certain subsequences of ordinates of zeros of the zeta function","authors":"FATMA ÇİÇEK, STEVEN M. GONEK","doi":"10.1017/s0305004124000045","DOIUrl":"https://doi.org/10.1017/s0305004124000045","url":null,"abstract":"<p>On the assumption of the Riemann hypothesis and a spacing hypothesis for the nontrivial zeros <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240229125249422-0748:S0305004124000045:S0305004124000045_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$1/2+igamma$</span></span></img></span></span> of the Riemann zeta function, we show that the sequence <span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240229125249422-0748:S0305004124000045:S0305004124000045_eqnU1.png\"><span data-mathjax-type=\"texmath\"><span>begin{equation*}Gamma_{[a, b]} =Bigg{ gamma : gamma>0 quad mbox{and} quad frac{ logbig(| zeta^{(m_{gamma })} (frac12+ i{gamma }) | / (!log{{gamma }} )^{m_{gamma }}big)}{sqrt{frac12loglog {gamma }}} in [a, b] Bigg},end{equation*}</span></span></img></span>where the <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240229125249422-0748:S0305004124000045:S0305004124000045_inline2.png\"><span data-mathjax-type=\"texmath\"><span>${gamma }$</span></span></img></span></span> are arranged in increasing order, is uniformly distributed modulo one. Here <span>a</span> and <span>b</span> are real numbers with <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240229125249422-0748:S0305004124000045:S0305004124000045_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$a<b$</span></span></img></span></span>, and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240229125249422-0748:S0305004124000045:S0305004124000045_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$m_gamma$</span></span></img></span></span> denotes the multiplicity of the zero <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240229125249422-0748:S0305004124000045:S0305004124000045_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$1/2+i{gamma }$</span></span></img></span></span>. The same result holds when the <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240229125249422-0748:S0305004124000045:S0305004124000045_inline6.png\"><span data-mathjax-type=\"texmath\"><span>${gamma }$</span></span></img></span></span>’s are restricted to be the ordinates of simple zeros. With an extra hypothesis, we are also able to show an equidistribution result for the scaled numbers <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240229125249422-0748:S0305004124000045:S0305004124000045_inline7.png\"><span data-mathjax-type=\"texmath","PeriodicalId":18320,"journal":{"name":"Mathematical Proceedings of the Cambridge Philosophical Society","volume":"252 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140009119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"PSP volume 176 issue 1 Cover and Front matter","authors":"","doi":"10.1017/s0305004123000610","DOIUrl":"https://doi.org/10.1017/s0305004123000610","url":null,"abstract":"","PeriodicalId":18320,"journal":{"name":"Mathematical Proceedings of the Cambridge Philosophical Society","volume":"51 2","pages":"f1 - f2"},"PeriodicalIF":0.8,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139168877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"PSP volume 176 issue 1 Cover and Back matter","authors":"","doi":"10.1017/s0305004123000622","DOIUrl":"https://doi.org/10.1017/s0305004123000622","url":null,"abstract":"","PeriodicalId":18320,"journal":{"name":"Mathematical Proceedings of the Cambridge Philosophical Society","volume":"38 2","pages":"b1 - b2"},"PeriodicalIF":0.8,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139169293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
DAVID DE BOER, PJOTR BUYS, LORENZO GUERINI, HAN PETERS, GUUS REGTS
{"title":"Zeros, chaotic ratios and the computational complexity of approximating the independence polynomial","authors":"DAVID DE BOER, PJOTR BUYS, LORENZO GUERINI, HAN PETERS, GUUS REGTS","doi":"10.1017/s030500412300052x","DOIUrl":"https://doi.org/10.1017/s030500412300052x","url":null,"abstract":"The independence polynomial originates in statistical physics as the partition function of the hard-core model. The location of the complex zeros of the polynomial is related to phase transitions, and plays an important role in the design of efficient algorithms to approximately compute evaluations of the polynomial. In this paper we directly relate the location of the complex zeros of the independence polynomial to computational hardness of approximating evaluations of the independence polynomial. We do this by moreover relating the location of zeros to chaotic behaviour of a naturally associated family of rational functions; the occupation ratios.","PeriodicalId":18320,"journal":{"name":"Mathematical Proceedings of the Cambridge Philosophical Society","volume":"8 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138532081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Three Schur functors related to pre-Lie algebras","authors":"VLADIMIR DOTSENKO, OISÍN FLYNN-CONNOLLY","doi":"10.1017/s0305004123000580","DOIUrl":"https://doi.org/10.1017/s0305004123000580","url":null,"abstract":"Abstract We give explicit combinatorial descriptions of three Schur functors arising in the theory of pre-Lie algebras. The first of them leads to a functorial description of the underlying vector space of the universal enveloping pre-Lie algebra of a given Lie algebra, strengthening the Poincaré-Birkhoff-Witt (PBW) theorem of Segal. The two other Schur functors provide functorial descriptions of the underlying vector spaces of the universal multiplicative enveloping algebra and of the module of Kähler differentials of a given pre-Lie algebra. An important consequence of such descriptions is an interpretation of the cohomology of a pre-Lie algebra with coefficients in a module as a derived functor for the category of modules over the universal multiplicative enveloping algebra.","PeriodicalId":18320,"journal":{"name":"Mathematical Proceedings of the Cambridge Philosophical Society","volume":"251 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136112794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}