零,混沌比和逼近独立多项式的计算复杂度

IF 0.6 3区 数学 Q3 MATHEMATICS
DAVID DE BOER, PJOTR BUYS, LORENZO GUERINI, HAN PETERS, GUUS REGTS
{"title":"零,混沌比和逼近独立多项式的计算复杂度","authors":"DAVID DE BOER, PJOTR BUYS, LORENZO GUERINI, HAN PETERS, GUUS REGTS","doi":"10.1017/s030500412300052x","DOIUrl":null,"url":null,"abstract":"The independence polynomial originates in statistical physics as the partition function of the hard-core model. The location of the complex zeros of the polynomial is related to phase transitions, and plays an important role in the design of efficient algorithms to approximately compute evaluations of the polynomial. In this paper we directly relate the location of the complex zeros of the independence polynomial to computational hardness of approximating evaluations of the independence polynomial. We do this by moreover relating the location of zeros to chaotic behaviour of a naturally associated family of rational functions; the occupation ratios.","PeriodicalId":18320,"journal":{"name":"Mathematical Proceedings of the Cambridge Philosophical Society","volume":"8 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Zeros, chaotic ratios and the computational complexity of approximating the independence polynomial\",\"authors\":\"DAVID DE BOER, PJOTR BUYS, LORENZO GUERINI, HAN PETERS, GUUS REGTS\",\"doi\":\"10.1017/s030500412300052x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The independence polynomial originates in statistical physics as the partition function of the hard-core model. The location of the complex zeros of the polynomial is related to phase transitions, and plays an important role in the design of efficient algorithms to approximately compute evaluations of the polynomial. In this paper we directly relate the location of the complex zeros of the independence polynomial to computational hardness of approximating evaluations of the independence polynomial. We do this by moreover relating the location of zeros to chaotic behaviour of a naturally associated family of rational functions; the occupation ratios.\",\"PeriodicalId\":18320,\"journal\":{\"name\":\"Mathematical Proceedings of the Cambridge Philosophical Society\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Proceedings of the Cambridge Philosophical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s030500412300052x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Cambridge Philosophical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s030500412300052x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 11

摘要

独立多项式起源于统计物理学中作为硬核模型的配分函数。多项式复零点的位置与相变有关,在设计高效的多项式近似计算算法中起着重要作用。在本文中,我们将独立多项式的复零点的位置直接与独立多项式的近似求值的计算难度联系起来。此外,我们通过将零的位置与自然关联的有理函数族的混沌行为联系起来来做到这一点;占比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Zeros, chaotic ratios and the computational complexity of approximating the independence polynomial
The independence polynomial originates in statistical physics as the partition function of the hard-core model. The location of the complex zeros of the polynomial is related to phase transitions, and plays an important role in the design of efficient algorithms to approximately compute evaluations of the polynomial. In this paper we directly relate the location of the complex zeros of the independence polynomial to computational hardness of approximating evaluations of the independence polynomial. We do this by moreover relating the location of zeros to chaotic behaviour of a naturally associated family of rational functions; the occupation ratios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Papers which advance knowledge of mathematics, either pure or applied, will be considered by the Editorial Committee. The work must be original and not submitted to another journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信