A bound of the number of weighted blow-ups to compute the minimal log discrepancy for smooth 3-folds

IF 0.6 3区 数学 Q3 MATHEMATICS
SHIHOKO ISHII
{"title":"A bound of the number of weighted blow-ups to compute the minimal log discrepancy for smooth 3-folds","authors":"SHIHOKO ISHII","doi":"10.1017/s030500412400001x","DOIUrl":null,"url":null,"abstract":"We study a pair consisting of a smooth 3-fold defined over an algebraically closed field and a “general” <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S030500412400001X_inline1.png\" /> <jats:tex-math> ${\\Bbb R}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-ideal. We show that the minimal log discrepancy (“mld” for short) of every such a pair is computed by a prime divisor obtained by at most two weighted blow-ups. This bound is regarded as a weighted blow-up version of Mustaţă–Nakamura’s conjecture. We also show that if the mld of such a pair is not less than 1, then it is computed by at most one weighted blow-up. As a consequence, ACC of mld holds for such pairs.","PeriodicalId":18320,"journal":{"name":"Mathematical Proceedings of the Cambridge Philosophical Society","volume":"5 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Cambridge Philosophical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s030500412400001x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study a pair consisting of a smooth 3-fold defined over an algebraically closed field and a “general” ${\Bbb R}$ -ideal. We show that the minimal log discrepancy (“mld” for short) of every such a pair is computed by a prime divisor obtained by at most two weighted blow-ups. This bound is regarded as a weighted blow-up version of Mustaţă–Nakamura’s conjecture. We also show that if the mld of such a pair is not less than 1, then it is computed by at most one weighted blow-up. As a consequence, ACC of mld holds for such pairs.
计算光滑 3 折叠最小对数差异的加权炸裂次数约束
我们研究了由定义在代数闭域上的光滑 3 折叠和 "一般"${\Bbb R}$ -ideal组成的一对。我们证明,每个这样的对的最小对数差异(简称 "mld")都是由最多两次加权炸开得到的素除数计算出来的。这一约束被视为穆斯塔法-中村猜想的加权炸毁版本。我们还证明,如果这一对的 mld 不小于 1,那么它最多通过一次加权炸毁来计算。因此,mld 的 ACC 对此类棋对成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Papers which advance knowledge of mathematics, either pure or applied, will be considered by the Editorial Committee. The work must be original and not submitted to another journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信