zeta函数零点序数的某些子序列的均匀分布模一

IF 0.6 3区 数学 Q3 MATHEMATICS
FATMA ÇİÇEK, STEVEN M. GONEK
{"title":"zeta函数零点序数的某些子序列的均匀分布模一","authors":"FATMA ÇİÇEK, STEVEN M. GONEK","doi":"10.1017/s0305004124000045","DOIUrl":null,"url":null,"abstract":"<p>On the assumption of the Riemann hypothesis and a spacing hypothesis for the nontrivial zeros <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240229125249422-0748:S0305004124000045:S0305004124000045_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$1/2+i\\gamma$</span></span></img></span></span> of the Riemann zeta function, we show that the sequence <span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240229125249422-0748:S0305004124000045:S0305004124000045_eqnU1.png\"><span data-mathjax-type=\"texmath\"><span>\\begin{equation*}\\Gamma_{[a, b]} =\\Bigg\\{ \\gamma : \\gamma&gt;0 \\quad \\mbox{and} \\quad \\frac{ \\log\\big(| \\zeta^{(m_{\\gamma })} (\\frac12+ i{\\gamma }) | / (\\!\\log{{\\gamma }} )^{m_{\\gamma }}\\big)}{\\sqrt{\\frac12\\log\\log {\\gamma }}} \\in [a, b] \\Bigg\\},\\end{equation*}</span></span></img></span>where the <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240229125249422-0748:S0305004124000045:S0305004124000045_inline2.png\"><span data-mathjax-type=\"texmath\"><span>${\\gamma }$</span></span></img></span></span> are arranged in increasing order, is uniformly distributed modulo one. Here <span>a</span> and <span>b</span> are real numbers with <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240229125249422-0748:S0305004124000045:S0305004124000045_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$a&lt;b$</span></span></img></span></span>, and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240229125249422-0748:S0305004124000045:S0305004124000045_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$m_\\gamma$</span></span></img></span></span> denotes the multiplicity of the zero <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240229125249422-0748:S0305004124000045:S0305004124000045_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$1/2+i{\\gamma }$</span></span></img></span></span>. The same result holds when the <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240229125249422-0748:S0305004124000045:S0305004124000045_inline6.png\"><span data-mathjax-type=\"texmath\"><span>${\\gamma }$</span></span></img></span></span>’s are restricted to be the ordinates of simple zeros. With an extra hypothesis, we are also able to show an equidistribution result for the scaled numbers <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240229125249422-0748:S0305004124000045:S0305004124000045_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$\\gamma (\\!\\log T)/2\\pi$</span></span></img></span></span> with <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240229125249422-0748:S0305004124000045:S0305004124000045_inline8.png\"><span data-mathjax-type=\"texmath\"><span>${\\gamma }\\in \\Gamma_{[a, b]}$</span></span></img></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240229125249422-0748:S0305004124000045:S0305004124000045_inline9.png\"/><span data-mathjax-type=\"texmath\"><span>$0&lt;{\\gamma }\\leq T$</span></span></span></span>.</p>","PeriodicalId":18320,"journal":{"name":"Mathematical Proceedings of the Cambridge Philosophical Society","volume":"252 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The uniform distribution modulo one of certain subsequences of ordinates of zeros of the zeta function\",\"authors\":\"FATMA ÇİÇEK, STEVEN M. GONEK\",\"doi\":\"10.1017/s0305004124000045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>On the assumption of the Riemann hypothesis and a spacing hypothesis for the nontrivial zeros <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240229125249422-0748:S0305004124000045:S0305004124000045_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$1/2+i\\\\gamma$</span></span></img></span></span> of the Riemann zeta function, we show that the sequence <span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240229125249422-0748:S0305004124000045:S0305004124000045_eqnU1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>\\\\begin{equation*}\\\\Gamma_{[a, b]} =\\\\Bigg\\\\{ \\\\gamma : \\\\gamma&gt;0 \\\\quad \\\\mbox{and} \\\\quad \\\\frac{ \\\\log\\\\big(| \\\\zeta^{(m_{\\\\gamma })} (\\\\frac12+ i{\\\\gamma }) | / (\\\\!\\\\log{{\\\\gamma }} )^{m_{\\\\gamma }}\\\\big)}{\\\\sqrt{\\\\frac12\\\\log\\\\log {\\\\gamma }}} \\\\in [a, b] \\\\Bigg\\\\},\\\\end{equation*}</span></span></img></span>where the <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240229125249422-0748:S0305004124000045:S0305004124000045_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\gamma }$</span></span></img></span></span> are arranged in increasing order, is uniformly distributed modulo one. Here <span>a</span> and <span>b</span> are real numbers with <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240229125249422-0748:S0305004124000045:S0305004124000045_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$a&lt;b$</span></span></img></span></span>, and <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240229125249422-0748:S0305004124000045:S0305004124000045_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$m_\\\\gamma$</span></span></img></span></span> denotes the multiplicity of the zero <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240229125249422-0748:S0305004124000045:S0305004124000045_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$1/2+i{\\\\gamma }$</span></span></img></span></span>. The same result holds when the <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240229125249422-0748:S0305004124000045:S0305004124000045_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\gamma }$</span></span></img></span></span>’s are restricted to be the ordinates of simple zeros. With an extra hypothesis, we are also able to show an equidistribution result for the scaled numbers <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240229125249422-0748:S0305004124000045:S0305004124000045_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\gamma (\\\\!\\\\log T)/2\\\\pi$</span></span></img></span></span> with <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240229125249422-0748:S0305004124000045:S0305004124000045_inline8.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\gamma }\\\\in \\\\Gamma_{[a, b]}$</span></span></img></span></span> and <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240229125249422-0748:S0305004124000045:S0305004124000045_inline9.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$0&lt;{\\\\gamma }\\\\leq T$</span></span></span></span>.</p>\",\"PeriodicalId\":18320,\"journal\":{\"name\":\"Mathematical Proceedings of the Cambridge Philosophical Society\",\"volume\":\"252 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Proceedings of the Cambridge Philosophical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0305004124000045\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Cambridge Philosophical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0305004124000045","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在黎曼假设和黎曼zeta函数非奇异零点1/2+i\gamma$的间隔假设的前提下,我们证明了序列 \begin{equation*}\Gamma_{[a, b]} =\Bigg\{ \gamma : \gamma>0 \quad \mbox{and}.\quad \frac{ log\big(| \zeta^{(m_{\gamma })} (\frac12+ i{\gamma }) | / (\!\log{{\gamma }} )^{m_{\gamma }}\big)} {sqrt{\frac12\log{\gamma }}}\in [a, b] \Bigg\},end{equation*} 其中 ${gamma }$ 是按递增顺序排列的,是均匀分布的 modulo 1。这里,a 和 b 是实数,取值为 $a<b$,$m_\gamma$ 表示零点的倍率 $1/2+i{gamma }$。当限制 ${gamma }$ 为简单零点的序数时,同样的结果成立。通过一个额外的假设,我们还能证明${\gamma }/$在 \Gamma_{[a, b]}$ 和$0<{\gamma }leq T$中的缩放数$\gamma (\!\log T)/2\pi$ 的等分布结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The uniform distribution modulo one of certain subsequences of ordinates of zeros of the zeta function

On the assumption of the Riemann hypothesis and a spacing hypothesis for the nontrivial zeros $1/2+i\gamma$ of the Riemann zeta function, we show that the sequence \begin{equation*}\Gamma_{[a, b]} =\Bigg\{ \gamma : \gamma>0 \quad \mbox{and} \quad \frac{ \log\big(| \zeta^{(m_{\gamma })} (\frac12+ i{\gamma }) | / (\!\log{{\gamma }} )^{m_{\gamma }}\big)}{\sqrt{\frac12\log\log {\gamma }}} \in [a, b] \Bigg\},\end{equation*}where the ${\gamma }$ are arranged in increasing order, is uniformly distributed modulo one. Here a and b are real numbers with $a<b$, and $m_\gamma$ denotes the multiplicity of the zero $1/2+i{\gamma }$. The same result holds when the ${\gamma }$’s are restricted to be the ordinates of simple zeros. With an extra hypothesis, we are also able to show an equidistribution result for the scaled numbers $\gamma (\!\log T)/2\pi$ with ${\gamma }\in \Gamma_{[a, b]}$ and $0<{\gamma }\leq T$.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Papers which advance knowledge of mathematics, either pure or applied, will be considered by the Editorial Committee. The work must be original and not submitted to another journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信