How to solve a binary cubic equation in integers

IF 0.6 3区 数学 Q3 MATHEMATICS
DAVID MASSER
{"title":"How to solve a binary cubic equation in integers","authors":"DAVID MASSER","doi":"10.1017/s0305004124000057","DOIUrl":null,"url":null,"abstract":"<p>Given any polynomial in two variables of degree at most three with rational integer coefficients, we obtain a new search bound to decide effectively if it has a zero with rational integer coefficients. On the way we encounter a natural problem of estimating singular points. We solve it using elementary invariant theory but an optimal solution would seem to be far from easy even using the full power of the standard Height Machine.</p>","PeriodicalId":18320,"journal":{"name":"Mathematical Proceedings of the Cambridge Philosophical Society","volume":"66 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Cambridge Philosophical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0305004124000057","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given any polynomial in two variables of degree at most three with rational integer coefficients, we obtain a new search bound to decide effectively if it has a zero with rational integer coefficients. On the way we encounter a natural problem of estimating singular points. We solve it using elementary invariant theory but an optimal solution would seem to be far from easy even using the full power of the standard Height Machine.

如何解整数二元三次方程
给定任何最多有三个有理整数系数的两变量多项式,我们得到了一个新的搜索边界,可以有效地判定它是否有一个有理整数系数的零点。在此过程中,我们会遇到一个估计奇异点的自然问题。我们用基本不变理论来解决这个问题,但即使使用标准高度机的全部功能,要得到最优解似乎也不容易。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Papers which advance knowledge of mathematics, either pure or applied, will be considered by the Editorial Committee. The work must be original and not submitted to another journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信