International Journal of Quantum Chemistry最新文献

筛选
英文 中文
Elucidating the Hydrolysis and Polymerization Reactions of Al3+-Solvated Molecules by Reactive Molecular Dynamics Simulation 通过反应分子动力学模拟阐明 Al3+ 溶剂分子的水解和聚合反应
IF 2.3 3区 化学
International Journal of Quantum Chemistry Pub Date : 2024-09-16 DOI: 10.1002/qua.27483
Feng Liu, Qi Zhao, Yuguo Xia, Xiuling Jiao, Dairong Chen
{"title":"Elucidating the Hydrolysis and Polymerization Reactions of Al3+-Solvated Molecules by Reactive Molecular Dynamics Simulation","authors":"Feng Liu,&nbsp;Qi Zhao,&nbsp;Yuguo Xia,&nbsp;Xiuling Jiao,&nbsp;Dairong Chen","doi":"10.1002/qua.27483","DOIUrl":"https://doi.org/10.1002/qua.27483","url":null,"abstract":"<div>\u0000 \u0000 <p>Utilizing the reactive molecular dynamics (ReaxFF MD) simulation, we conducted a comprehensive study on the impact of basicity (OH<sup>−</sup>/Al<sup>3+</sup> ratio), concentration, and temperature on the hydrolysis and polymerization reactions of Al<sup>3+</sup>-solvated molecules. Through simulations, we analyzed the structural changes, energy fluctuations of the system, and the evolution patterns of reaction products under different parameters, which were subsequently validated by experimental data. The research results indicate that hydroxide ions in the solution directly influence the breakage of O<span></span>H bonds in the coordinating water molecules of solvated aluminum ions. This, in turn, affects the number of H<sub>2</sub>O and OH<sup>−</sup> ions coordinated with Al<sup>3+</sup>, leading to changes in hydrolysis products. Additionally, the number of OH<sup>−</sup> ions surrounding Al<sup>3+</sup> affects the electrostatic repulsion, making it easier for polymerization reactions to occur as the system approaches the point of zero charge. On the other hand, an increase in concentration and temperature enhances the frequency of cluster collisions, thus contributing to an increase in polymerization degree. The experimental results align closely with our simulated predictions. As the pH value increases, the particle size exhibits a trend of first increasing and then decreasing, reaching a maximum at the point of zero charge. Simultaneously, an increase in concentration also prompts an increase in particle size. The combination of these empirical results with simulations enhances the credibility and reliability of our model's predictive capabilities. This study not only expands our understanding of the relevant chemical reaction processes but also provides important theoretical support for practical applications in related fields.</p>\u0000 </div>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"124 19","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142244507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spectrum-Based Topological Indices and Their QSPR Studies of Nonsteroidal Anti-Inflammatory Drugs 基于光谱的非甾体抗炎药拓扑指标及其 QSPR 研究
IF 2.3 3区 化学
International Journal of Quantum Chemistry Pub Date : 2024-09-14 DOI: 10.1002/qua.27472
K. Pattabiraman, P. Danesh
{"title":"Spectrum-Based Topological Indices and Their QSPR Studies of Nonsteroidal Anti-Inflammatory Drugs","authors":"K. Pattabiraman,&nbsp;P. Danesh","doi":"10.1002/qua.27472","DOIUrl":"https://doi.org/10.1002/qua.27472","url":null,"abstract":"<div>\u0000 \u0000 <p>Spectrum-based topological indices (eigenvalue-based topological indices), a valuable tool for analyzing molecular structure. These topological indices are metrics that reflect the inherent characteristics of chemical substances, were employed in conjunction with quantitative structure-property relationship (QSPR) to investigate nonsteroidal anti-inflammatory drugs (NSAIDs) which are used toalleviate or eliminate pain sensations in affected areas. We have to use mathematica to compute various eigenvalue-based indices and utilized statistical software to identify correlations between these indices and key physical properties of NSAIDs. The analysis revealed that specific indices, including <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mrow>\u0000 <mi>E</mi>\u0000 </mrow>\u0000 <mrow>\u0000 <mi>F</mi>\u0000 <mi>Z</mi>\u0000 <mi>S</mi>\u0000 </mrow>\u0000 </msub>\u0000 </mrow>\u0000 <annotation>$$ {E}_{FZS} $$</annotation>\u0000 </semantics></math> index, <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mrow>\u0000 <mi>ρ</mi>\u0000 </mrow>\u0000 <mrow>\u0000 <mi>F</mi>\u0000 <mi>Z</mi>\u0000 <mi>S</mi>\u0000 </mrow>\u0000 </msub>\u0000 </mrow>\u0000 <annotation>$$ {rho}_{FZS} $$</annotation>\u0000 </semantics></math> index, <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mrow>\u0000 <mi>E</mi>\u0000 </mrow>\u0000 <mrow>\u0000 <mi>I</mi>\u0000 <mi>S</mi>\u0000 <mi>I</mi>\u0000 <mi>S</mi>\u0000 </mrow>\u0000 </msub>\u0000 </mrow>\u0000 <annotation>$$ {E}_{ISIS} $$</annotation>\u0000 </semantics></math> index, and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mrow>\u0000 <mi>E</mi>\u0000 </mrow>\u0000 <mrow>\u0000 <mi>A</mi>\u0000 <mi>B</mi>\u0000 <mi>C</mi>\u0000 <mi>S</mi>\u0000 </mrow>\u0000 </msub>\u0000 </mrow>\u0000 <annotation>$$ {E}_{ABCS} $$</annotation>\u0000 </semantics></math> index exhibited strong associations with properties like complexity and refractivity, boiling point, polarity, and molar weight, respectively.</p>\u0000 </div>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"124 18","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142233105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanism of Iron-Catalyzed C—H Alkenylation of Pivalophenone Derivatives With Unsymmetric Internal Alkynes 铁催化具有不对称内部炔烃的新戊酮衍生物的 C-H 烯化机理
IF 2.3 3区 化学
International Journal of Quantum Chemistry Pub Date : 2024-09-11 DOI: 10.1002/qua.27479
Stefano Santoro
{"title":"Mechanism of Iron-Catalyzed C—H Alkenylation of Pivalophenone Derivatives With Unsymmetric Internal Alkynes","authors":"Stefano Santoro","doi":"10.1002/qua.27479","DOIUrl":"https://doi.org/10.1002/qua.27479","url":null,"abstract":"<p>The mechanism of an iron-catalyzed C—H alkenylation of pivalophenone derivatives with unsymmetric internal alkynes is investigated in details by means of density functional theory calculations. It is shown that the reaction begins with two consecutive ligand exchanges, followed by a fast and reversible oxidative addition C—H activation step. Next, an alkyne insertion into the Fe—H bond, two isomerization steps, and a reductive elimination afford the final product. The reductive elimination is the turnover-limiting step of the process, and also determines the regiochemical outcome of the reaction. The origin of the regioselectivity is proposed to be the steric repulsion between the bulky trimethylsilyl group and the aromatic fragment in the reductive elimination step leading to the not observed regioisomer.</p>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"124 18","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/qua.27479","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142170132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Theoretical Prediction on the Reaction of Dimeric Ca Hydride [(BDI)Ca(μ-H)]2 With 1,3-Cyclopentadiene to Produce [(BDI)Ca(μ-C5H5)]2: The Decisive Role of Aromatization 二聚氢化钙[(BDI)Ca(μ-H)]2 与 1,3-环戊二烯反应生成[(BDI)Ca(μ-C5H5)]2 的理论预测:芳香化的决定性作用
IF 2.3 3区 化学
International Journal of Quantum Chemistry Pub Date : 2024-09-04 DOI: 10.1002/qua.27477
Nannan Liu, Hongfeng Li
{"title":"Theoretical Prediction on the Reaction of Dimeric Ca Hydride [(BDI)Ca(μ-H)]2 With 1,3-Cyclopentadiene to Produce [(BDI)Ca(μ-C5H5)]2: The Decisive Role of Aromatization","authors":"Nannan Liu,&nbsp;Hongfeng Li","doi":"10.1002/qua.27477","DOIUrl":"https://doi.org/10.1002/qua.27477","url":null,"abstract":"<div>\u0000 \u0000 <p>This study explores the reaction mechanism between [(BDI)Ca(μ-H)]<sub>2</sub> and cyclopentadiene (C<sub>5</sub>H<sub>6</sub>). By analyzing the reaction pathways, it is found that compared with the traditional Ca<span></span>H/CC insertion reaction of polyenes with [(BDI)Ca(μ-H)]<sub>2</sub>, C<sub>5</sub>H<sub>6</sub> is more inclined to undergo a Ca<span></span>H/CH<sub>2</sub> dehydrogenation reaction, resulting in more stable cyclopentadienyl complexes. The subsequent reactions also tend to continue with dehydrogenation to form dimeric complexes. The aromatization process of C<sub>5</sub>H<sub>6</sub> is a key factor driving this reaction trend. This result provides a new perspective for understanding the catalytic behavior of calcium hydride derivatives and can help in the design and synthesis of new catalysts and functional materials based on such compounds.</p>\u0000 </div>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"124 17","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142137705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neighborhood Degree Based Topological Indices of Nanotube via Direct and NM-Polynomial 通过直接和 NM-Polynomial 方法获得基于邻域度的纳米管拓扑指标
IF 2.3 3区 化学
International Journal of Quantum Chemistry Pub Date : 2024-09-04 DOI: 10.1002/qua.27474
Muhammad Irfan, Farhana Yasmeen, Shanza Aziz, Muzammil Mukhtar
{"title":"Neighborhood Degree Based Topological Indices of Nanotube via Direct and NM-Polynomial","authors":"Muhammad Irfan,&nbsp;Farhana Yasmeen,&nbsp;Shanza Aziz,&nbsp;Muzammil Mukhtar","doi":"10.1002/qua.27474","DOIUrl":"https://doi.org/10.1002/qua.27474","url":null,"abstract":"<div>\u0000 \u0000 <p>The analysis of various chemical structures can be done by using topological indices (TI), graph polynomials, and other useful tools that graph theory offers. The mathematical entries called TI are subtracted from the chemical structure. In this article, we investigate the neighborhood degree based topological indices of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>T</mi>\u0000 <mi>U</mi>\u0000 <msub>\u0000 <mrow>\u0000 <mi>C</mi>\u0000 </mrow>\u0000 <mrow>\u0000 <mn>4</mn>\u0000 </mrow>\u0000 </msub>\u0000 <msub>\u0000 <mrow>\u0000 <mi>C</mi>\u0000 </mrow>\u0000 <mrow>\u0000 <mn>8</mn>\u0000 </mrow>\u0000 </msub>\u0000 <mo>(</mo>\u0000 <mi>R</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$$ TU{C}_4{C}_8(R) $$</annotation>\u0000 </semantics></math> nanotube via direct and NM-polynomial. The indices which we have computed are first, second, third, fourth, fifth NDe indices, third version of Zagreb index, neighborhood second Zagreb index, neighborhood second modified Zagreb index, neighborhood forgotten topological index, neighborhood general Randic index, neighborhood inverse sum index, fourth atom bond connectivity index, fifth geometric arithmetic index, fifth arithmetic geometric index, fifth hyper first and second Zagreb index.</p>\u0000 </div>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"124 17","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142142360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Resistance Distance and Kirchhoff Index of Cayley Graphs on Generalized Quaternion Groups 广义四元组上 Cayley 图的阻力距离和基尔霍夫指数
IF 2.3 3区 化学
International Journal of Quantum Chemistry Pub Date : 2024-08-28 DOI: 10.1002/qua.27471
Yan Wang, Shuo Zhu, Kai Yuan
{"title":"Resistance Distance and Kirchhoff Index of Cayley Graphs on Generalized Quaternion Groups","authors":"Yan Wang,&nbsp;Shuo Zhu,&nbsp;Kai Yuan","doi":"10.1002/qua.27471","DOIUrl":"https://doi.org/10.1002/qua.27471","url":null,"abstract":"<div>\u0000 \u0000 <p>Based on irreducible representations of generalized quaternion groups, closed-form formulae of Kirchhoff indices and resistance distances between vertex pairs of Cayley graphs on these groups are given.</p>\u0000 </div>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"124 17","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142089825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to “A Comprehensive Analysis of Electronic Transitions in Naphthalene and Perylene Diimide Derivatives Through Computational Methods” 对 "通过计算方法全面分析萘和珀烯二亚胺衍生物中的电子跃迁 "的更正
IF 2.3 3区 化学
International Journal of Quantum Chemistry Pub Date : 2024-08-28 DOI: 10.1002/qua.27473
{"title":"Correction to “A Comprehensive Analysis of Electronic Transitions in Naphthalene and Perylene Diimide Derivatives Through Computational Methods”","authors":"","doi":"10.1002/qua.27473","DOIUrl":"https://doi.org/10.1002/qua.27473","url":null,"abstract":"<p>W. Hussain, M. S. Iqbal, H. Li, M. Sulaman, H. Guo, C. Li, Y. Sandali, A. Irfan, and H. S. Ali, “A Comprehensive Analysis of Electronic Transitions in Naphthalene and Perylene Diimide Derivatives Through Computational Methods,” <i>International Journal of Quantum Chemistry</i> 124, no. 1 (2024): e27223, 10.1002/qua.27223.</p><p>During the assembly of Figure 27, the image intended to represent Figure D was incorrectly replaced by a duplicate of Figure E. This resulted in the erroneous presentation of Figure E twice and the omission of the correct Figure D.</p><p>Additionally, a statement from Section 2.2 Computational Detail needs to be changed from: “The DOS data were shown using PyMOlyze 1.1, and the electron densities were calculated using Multiwfn 3.7 [43].” to “The DOS data were shown using PyMOlyze 1.1, and the electron density maps and non-covalent interaction (NCI) plots were generated using Multiwfn 3.7 [43] and visualized using VMD software (Ref. W. Humphrey, A. Dalke, and K. Schulten, “VMD: Visual Molecular Dynamics,” <i>Journal of Molecular Graphics</i> 14, no. 1 (1996): 33–38, 27–38.).”</p><p>We apologize for this error.</p>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"124 17","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/qua.27473","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142089832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computationally Effective Approach for Studies of Mechanism and Thermodynamics of Heterogeneous Catalytic Processes on Metal Oxides 研究金属氧化物上异质催化过程的机理和热力学的有效计算方法
IF 2.3 3区 化学
International Journal of Quantum Chemistry Pub Date : 2024-08-28 DOI: 10.1002/qua.27470
Ekaterina G. Ragoyja, Vitaly E. Matulis, Oleg A. Ivashkevich, Dmitry A. Lyakhov, Dominik Michels
{"title":"Computationally Effective Approach for Studies of Mechanism and Thermodynamics of Heterogeneous Catalytic Processes on Metal Oxides","authors":"Ekaterina G. Ragoyja,&nbsp;Vitaly E. Matulis,&nbsp;Oleg A. Ivashkevich,&nbsp;Dmitry A. Lyakhov,&nbsp;Dominik Michels","doi":"10.1002/qua.27470","DOIUrl":"https://doi.org/10.1002/qua.27470","url":null,"abstract":"<div>\u0000 \u0000 <p>To understand the nature of heterogeneous catalytic processes and improve their efficiency, it is necessary to conduct both experimental and theoretical studies. At the same time, there is no unified approach to obtaining the necessary data using quantum chemistry methods. In this work, problems of the existing calculational approaches are analyzed. The obtained information is used to develop the original three-layer embedded cluster model approach, which is shown to be the most effective. The general algorithm for obtaining such models for various oxides is formulated. The sufficient accuracy of the proposed models in predicting geometric and energy characteristics, vibrational frequencies, activation barriers, and thermodynamic characteristics is verified. The specifics of calculating the thermodynamic characteristics of heterogeneous processes using the proposed cluster models is studied in detail. The developed approach is an effective tool for studying the mechanism of heterogeneous catalytic processes both by itself and in combination with experiment.</p>\u0000 </div>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"124 17","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142089830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermomagnetic Models for the Improved Rosen–Morse Oscillator 改进型罗森-莫尔斯振荡器的热磁模型
IF 2.3 3区 化学
International Journal of Quantum Chemistry Pub Date : 2024-08-28 DOI: 10.1002/qua.27463
A. D. Ahmed, E. S. Eyube, S. D. Najoji, P. U. Tanko, C. A. Onate, E. Omugbe, B. D. Mohammed, C. R. Makasson, E. H. Mshelia
{"title":"Thermomagnetic Models for the Improved Rosen–Morse Oscillator","authors":"A. D. Ahmed,&nbsp;E. S. Eyube,&nbsp;S. D. Najoji,&nbsp;P. U. Tanko,&nbsp;C. A. Onate,&nbsp;E. Omugbe,&nbsp;B. D. Mohammed,&nbsp;C. R. Makasson,&nbsp;E. H. Mshelia","doi":"10.1002/qua.27463","DOIUrl":"https://doi.org/10.1002/qua.27463","url":null,"abstract":"<div>\u0000 \u0000 <p>This study solves the radial Schrödinger wave equation (RSWE) with the improved Rosen–Morse (IRM) potential constrained by an electromagnetic field. Energy eigenvalues are derived using the parametric Nikiforov–Uvarov method and Pekeris approximation. The internal partition function, isobaric molar heat capacity formula, and magnetization model are then deduced from the equation governing pure vibrational energy states. These analytical models are applied to several pure substances, specifically Br<sub>2</sub> (X <sup>1</sup>Σ<sub>g</sub><sup>+</sup>), BrF (X <sup>1</sup>Σ<sup>+</sup>), ICl (X <sup>1</sup>Σ<sub>g</sub><sup>+</sup>), and P<sub>2</sub> (X <sup>1</sup>Σ<sub>g</sub><sup>+</sup>) molecules. Numerical approximations of the energy eigenvalues for these molecules closely match their exact values. The isobaric molar heat capacity expression yields mean percentage absolute deviations of 1.6585%, 0.9162%, 1.2193%, and 0.7232% when compared against experimental data for Br<sub>2</sub> (X <sup>1</sup>Σ<sub>g</sub><sup>+</sup>), BrF (X <sup>1</sup>Σ<sup>+</sup>), ICl (X <sup>1</sup>Σ<sub>g</sub><sup>+</sup>), and P<sub>2</sub> (X <sup>1</sup>Σ<sub>g</sub><sup>+</sup>), respectively. These results align well with other heat capacity models in existing literature.</p>\u0000 </div>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"124 17","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142089831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational Study of Noncovalent Interactions on Addition of Small Molecule Units With Benzenoid Aromatic Rings 小分子单元与苯类芳香环添加时的非共价相互作用的计算研究
IF 2.3 3区 化学
International Journal of Quantum Chemistry Pub Date : 2024-08-17 DOI: 10.1002/qua.27466
Rohan Sharma, Chayanika Kashyap, Drishti Baruah, Ilakshi Baruah, Pankaz K. Sharma
{"title":"Computational Study of Noncovalent Interactions on Addition of Small Molecule Units With Benzenoid Aromatic Rings","authors":"Rohan Sharma,&nbsp;Chayanika Kashyap,&nbsp;Drishti Baruah,&nbsp;Ilakshi Baruah,&nbsp;Pankaz K. Sharma","doi":"10.1002/qua.27466","DOIUrl":"https://doi.org/10.1002/qua.27466","url":null,"abstract":"<div>\u0000 \u0000 <p>Experimental and theoretical studies over the recent years have shown that noncovalent interactions play a crucial role in diverse chemical and biological processes. Noncovalent interactions have been recognized as significantly contributing towards stabilizing various supramolecular species. We have attempted to interpret computationally the nature of various noncovalent interactions between the aromatic surfaces of 6-phenyl-1,3,5-triazine and biphenyl with polar as well as non-polar molecules such as H<sub>2</sub>O, HCl, HF, CO<sub>2</sub>, and so forth and adding the inter-aromatic rings π-stacking, using the r<sup>2</sup>SCAN-3c/DEF2-mTZVPP model chemistry. Energy decomposition analysis with the SAPT method shows that the electrostatics and dispersion components play crucial roles in stabilizing these complexes whereas induction and polarization play minor roles.</p>\u0000 </div>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"124 17","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141994258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信