International Journal of Quantum Chemistry最新文献

筛选
英文 中文
Theoretical study on the effect of shear deformation on WSe2 as a cathode material for calcium ion batteries 剪切变形对作为钙离子电池阴极材料的 WSe2 的影响的理论研究
IF 2.3 3区 化学
International Journal of Quantum Chemistry Pub Date : 2024-07-29 DOI: 10.1002/qua.27457
Kuiyuan Chen, Yanyan Feng
{"title":"Theoretical study on the effect of shear deformation on WSe2 as a cathode material for calcium ion batteries","authors":"Kuiyuan Chen,&nbsp;Yanyan Feng","doi":"10.1002/qua.27457","DOIUrl":"10.1002/qua.27457","url":null,"abstract":"<p>In this paper, the first-principles method is used to calculate the electronic structure of the intrinsic WSe<sub>2</sub> system and the Ca adsorbed WSe<sub>2</sub> system under shear deformation, and the diffusion barrier of Ca on WSe<sub>2</sub> is studied in depth. The results show that shear deformation can effectively reduce the band gap of WSe<sub>2</sub> system, and shear deformation can easily lead to the transition from semiconductor properties to metal properties. The adsorption of Ca leads to the change of the band structure of WSe<sub>2</sub>. The contribution of Ca-d electrons leads to an increase in the peak in the range of 3–6 eV. The shear deformation reduces the diffusion barrier of Ca on the WSe<sub>2</sub> surface. This paper provides an improvement method for the application of WSe<sub>2</sub> in the field of battery.</p>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"124 15","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141863558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantitative structure-property relationship techniques for predicting carbon dioxide solubility in ionic liquids using machine learning methods 利用机器学习方法预测二氧化碳在离子液体中溶解度的定量结构-性质关系技术
IF 2.3 3区 化学
International Journal of Quantum Chemistry Pub Date : 2024-07-29 DOI: 10.1002/qua.27450
Widad Benmouloud, Imane Euldji, Cherif Si-Moussa, Othmane Benkortbi
{"title":"Quantitative structure-property relationship techniques for predicting carbon dioxide solubility in ionic liquids using machine learning methods","authors":"Widad Benmouloud,&nbsp;Imane Euldji,&nbsp;Cherif Si-Moussa,&nbsp;Othmane Benkortbi","doi":"10.1002/qua.27450","DOIUrl":"10.1002/qua.27450","url":null,"abstract":"<p>Ionic liquids (ILs) are considered unique and attractive types of solvents with great potential to capture carbon dioxide (CO<sub>2</sub>) and reduce its emissions into the atmosphere. On the other hand, carrying out experimental measurements of CO<sub>2</sub> solubility for each new IL is time-consuming and expensive. Whereas, the possible combinations of cations and anions are numerous. Therefore, the preparation and design of such processes requires simple and accurate models to predict the solubility of CO<sub>2</sub> as a greenhouse gas. In the present study, two different models, namely: artificial neural network (ANN) and support vector machine optimized with dragonfly algorithm (DA-SVM) were used in order to establish a quantitative structure–property relationship (QSPR) between the molecular structures of cations and anions and the CO<sub>2</sub> solubility. More than 10 116 CO<sub>2</sub> solubility data measured in various ionic liquids (ILs) at different temperatures and pressures were collected. 13 significant PaDEL descriptors (E2M, MATS8S, TDB6I, TDB1S, ATSC4V, MATS8M, ATSC7V, Gats2S, Gats5S, Gats5C, ATSC6V, DE, and Lobmax), temperature and pressure were considered as the model input data. For the test set data (2023 data point), the estimated mean absolute error (MAE) and <i>R</i><sup>2</sup> for the ANN model are of 0.0195 and 0.9828 and 0.0219 and 0.9745 for the DA-SVM model. The results obtained showed that both models can reliably predict the solubility of CO<sub>2</sub> in ILs with a slight superiority of the ANN model. Examination of sensitivity and outlier diagnosis examinations confirmed that the QSPR model optimized using the ANN algorithm is better suited to correlate and predict this property.</p>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"124 15","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141863554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two-dimensional ammonia-linked COF structures with different substituents for the adsorption and separation of sulfur hexafluoride: A theoretical study 具有不同取代基的二维氨连接 COF 结构用于吸附和分离六氟化硫:理论研究
IF 2.3 3区 化学
International Journal of Quantum Chemistry Pub Date : 2024-07-29 DOI: 10.1002/qua.27453
Kun Shen, Junjie Ning, Rui Zhao, Kunqi Gao, Xiangyu Yin, Linxi Hou
{"title":"Two-dimensional ammonia-linked COF structures with different substituents for the adsorption and separation of sulfur hexafluoride: A theoretical study","authors":"Kun Shen,&nbsp;Junjie Ning,&nbsp;Rui Zhao,&nbsp;Kunqi Gao,&nbsp;Xiangyu Yin,&nbsp;Linxi Hou","doi":"10.1002/qua.27453","DOIUrl":"10.1002/qua.27453","url":null,"abstract":"<p>As one of the most potent greenhouse gases, SF<sub>6</sub> has a significant economic and environmental impact on the purification and recovery of exhaust gases from the semiconductor industry. The adsorption and separation performance of SF<sub>6</sub> on a two-dimensional covalent organic framework TAT-COFs-1-AB with different functional groups (<span></span>SO<sub>3</sub>H, <span></span>Et, <span></span>NH<sub>2</sub>, <span></span>OMe, <span></span>OH, <span></span>H) was investigated by using grand canonical Monte Carlo (GCMC) simulations and density functional theory (DFT) calculations. The results show that the adsorption at low pressure depends on the interactions between the SF<sub>6</sub> and COF frameworks, while at high pressure it is mainly affected by the porosity. The highest adsorption capacity of 8.44 mmol/g (298 K, 100 kPa) is exhibited by TAT-COF-1-AB-H, which has the highest porosity. Chemical functionalization was found to be effective in enhancing the SF<sub>6</sub>/N<sub>2</sub> selectivity. Among all the functionalized COFs, TAT-COF-1-AB-NH<sub>2</sub>, with the highest specific surface area and strong heat of adsorption, showed the highest selectivity. The simulation of self-diffusion also shows consistent results with the GCMC simulation. The findings highlight that the adsorption capacity is influenced by substituent and porosity, with SF<sub>6</sub> showing a consistent preference for adsorption at hollow sites, as evidenced by binding energy and charge transfer analyses.</p>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"124 15","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141863555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aromaticity of tropylium derivatives: When and why might captodative structures be preferred over the isomeric push-pull structures? 托品鎓衍生物的芳香性:什么时候以及为什么俘获结构比异构推拉结构更受青睐?
IF 2.3 3区 化学
International Journal of Quantum Chemistry Pub Date : 2024-07-25 DOI: 10.1002/qua.27449
Bagrat A. Shainyan
{"title":"Aromaticity of tropylium derivatives: When and why might captodative structures be preferred over the isomeric push-pull structures?","authors":"Bagrat A. Shainyan","doi":"10.1002/qua.27449","DOIUrl":"10.1002/qua.27449","url":null,"abstract":"<p>An intriguing question in the general problem of aromaticity is whether captodative aromatic systems with the donor and acceptor substituents at the same carbon of the CC bond can be more stable than the π-conjugated push-pull counterparts? The analysis of electronic, magnetic, and structural criteria of aromaticity showed that for conventional organic substituents XO, TfN, (NC)<sub>2</sub>C, (NO<sub>2</sub>)<sub>2</sub>C, Tf<sub>2</sub>C, the push-pull tropylidene derivatives [tropylium]<sup>+</sup><span></span>CHCH<span></span>X<sup>−</sup> are expectedly more stable than their captodative isomers [tropylium]<sup>+</sup>C(X<sup>−</sup>)CH<sub>2</sub>, with the lowest Δ<i>E</i> for the most strong acceptor Tf<sub>2</sub>C. A different behavior is observed for XMHlg<sub>3</sub> (MB, Al; HlgF, Cl). They are not only structurally and magnetically most aromatic in both series but show the inverse stability of the push-pull and captodative isomers, the latter being more stable by up to 10 kcal/mol (in gas).The difference between the MHlg<sub>3</sub> groups and conventional organic groups is that in the latter the electron density is transferred to the π-system of the substituent, while the former can accept it only to the σ*(C<span></span>M) orbital. Thus, when the electron donor and acceptor effects are separated between the σ and π systems, captodative isomers can be more stable than their push-pull isomers with more extended conjugation.</p>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"124 15","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141778984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Image, Volume 124, Issue 12 封面图片,第 124 卷第 12 期
IF 2.3 3区 化学
International Journal of Quantum Chemistry Pub Date : 2024-07-25 DOI: 10.1002/qua.27444
S. Salehfar, S. M. Azami
{"title":"Cover Image, Volume 124, Issue 12","authors":"S. Salehfar,&nbsp;S. M. Azami","doi":"10.1002/qua.27444","DOIUrl":"10.1002/qua.27444","url":null,"abstract":"<p>The cover image is based on the Research Article <i>Asymmetric electronic deformation in graphene molecular capacitors</i> by S. Salehfar et al., https://doi.org/10.1002/qua.27426.</p><p>[Correction added on 25 July 2024, after first online publication: Cover has been replaced.]\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"124 12","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/qua.27444","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141778783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrogenation of hexene catalyzed by a ruthenium (II) complex with N-heterocyclic carbene ligands 带有 N-杂环碳配体的钌(II)络合物催化的己烯氢化反应
IF 2.3 3区 化学
International Journal of Quantum Chemistry Pub Date : 2024-07-23 DOI: 10.1002/qua.27456
Sofiene Achour, Zied Hosni, Bahoueddine Tangour
{"title":"Hydrogenation of hexene catalyzed by a ruthenium (II) complex with N-heterocyclic carbene ligands","authors":"Sofiene Achour,&nbsp;Zied Hosni,&nbsp;Bahoueddine Tangour","doi":"10.1002/qua.27456","DOIUrl":"10.1002/qua.27456","url":null,"abstract":"<p>In this study, we investigated the mechanism of the inactivated hexene hydrogenation reaction catalyzed by a ruthenium (II) complex containing “<i>N</i>-heterocyclic carbene” (NHC) ligands, specifically SIMes and CBA, using DFT calculations. Our focus was on RuH(OSO<sub>2</sub>CF<sub>3</sub>)(CO)(SIMes)(CBA), which exhibits excellent catalytic behavior. We tested the B3LYP-D3, cam-B3LYP, and TPSSh functionals. The hydrogenation reaction is initiated by the release of SIMes rather than CBA due to the lower associated dissociation energy. Our findings indicate a reaction mechanism consisting of two consecutive steps, each involving one hydrogen atom migration. The first step, considered as the kinetically limiting transition state, exhibits a Gibbs free activation barrier of 12.9 kcal mol<sup>−1</sup>. This step involves two asynchronous processes. The first one describes the migration of the ruthenium hydride to the internal carbon of the olefine function, transitioning from <i>π</i> to <i>σ</i> coordination mode, which promotes the formation of a bond between ruthenium and the terminal olefinic carbon. The second process involves the oxidation of ruthenium from Ru(II) to Ru(IV). This oxidation is crucial as it enables the decomposition of the H<sub>2</sub> molecule into two hydrogen atoms bonded to the ruthenium atom. The geometrical structures of the Hidden Reaction Intermediate Ru(II) complex and the quasi-transition state of the second process have been determined by means of the RIRC technique. The second step entails the migration of one of the newly formed hydrides of the Ru(IV) complex to the terminal olefinic carbon, resulting in the release of hexane with a weak activation Gibbs free energy of .8 kcal mol<sup>−1</sup>. Lastly, we explored the use of dichloromethane as a solvent, considering the PCM model. The presence of the solvent significantly decreases the energy dissociation of SIMes from 17.9 to 9.0 kcal mol<sup>−1</sup>, providing notable benefits.</p>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"124 15","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/qua.27456","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141778985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Differences in carbonyl groups and boron acceptors in MR-TADF and full-color emission merging strategies: A theoretical study MR-TADF 和全色发射合并策略中羰基和硼受体的差异:理论研究
IF 2.3 3区 化学
International Journal of Quantum Chemistry Pub Date : 2024-07-23 DOI: 10.1002/qua.27454
Shengyao Huang, Kunsheng Zhang, Limei Tang, Ling Chen, Yujiao Luo, Yuman Li, Wei Shen
{"title":"Differences in carbonyl groups and boron acceptors in MR-TADF and full-color emission merging strategies: A theoretical study","authors":"Shengyao Huang,&nbsp;Kunsheng Zhang,&nbsp;Limei Tang,&nbsp;Ling Chen,&nbsp;Yujiao Luo,&nbsp;Yuman Li,&nbsp;Wei Shen","doi":"10.1002/qua.27454","DOIUrl":"10.1002/qua.27454","url":null,"abstract":"<p>Multi-resonant thermally activated delayed fluorescent (MR-TADF) materials, which combine large oscillator strengths, small singlet-triplet energy gaps, high photoluminescence quantum yields, and color purity, have attracted great interest in both experimental and theoretical research in recent years. However, the differences between two classes of MR-TADF, utilizing carbonyl groups and boron atoms as acceptors respectively, have not been clearly delineated, and the implementation of strategies combining both is extremely limited. This limitation hampers the diversity in composition and structure of MR-TADF. In this study, we employed boron as the central acceptor and carbonyl groups as peripheral acceptors, designing and investigating 7 merged systems of MR-TADF molecules. Calculations revealed that, in contrast to the strong acceptor characteristics of boron atoms, carbonyl groups do not exhibit absolute acceptor features, and their resonance effects depend on the surrounding environment. This unique resonance effect induces LRCT features to varying degrees, enabling the emission coverage of these molecules across almost the entire visible spectrum (theoretical emission wavelengths covering 452–751 nm). We gained an understanding of the differences between boron acceptors and carbonyl groups, achieving full-color emission by adjusting only the MR cores. This provides insights into the rational design of complex-component full-color MR-TADF emitters.</p>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"124 15","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141778782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Model two states dynamics of photo-detachment [F-H-F] − $$ {}^{-} $$ induced by an optimally designed polychromatic field 光脱[F-H-F]-$$ {}^{-} 的两种状态动力学模型由优化设计的多色场诱导的 $$
IF 2.3 3区 化学
International Journal of Quantum Chemistry Pub Date : 2024-07-22 DOI: 10.1002/qua.27455
Dipayan Seal, Shrabani Sen, Pinaki Chaudhury, Subhasree Ghosh
{"title":"Model two states dynamics of photo-detachment [F-H-F]\u0000 \u0000 \u0000 \u0000 \u0000 \u0000 −\u0000 \u0000 \u0000 \u0000 $$ {}^{-} $$\u0000 induced by an optimally designed polychromatic field","authors":"Dipayan Seal,&nbsp;Shrabani Sen,&nbsp;Pinaki Chaudhury,&nbsp;Subhasree Ghosh","doi":"10.1002/qua.27455","DOIUrl":"10.1002/qua.27455","url":null,"abstract":"&lt;p&gt;Photo-detachment of electron from [F-H-F]&lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msup&gt;\u0000 &lt;mrow&gt;&lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msup&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ {}^{-} $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; to generate neutral [F-H-F] has been studied in this article. Neutral &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mtext&gt;HF&lt;/mtext&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ {mathrm{HF}}_2 $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; has a linear structure and this is the transition state (T.S.) of F + HF &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;→&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ to $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; FH + F reaction. The Potential Energy Surface (P.E.S.) of neutral [F-H-F] and molecular anion [F-H-F]&lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msup&gt;\u0000 &lt;mrow&gt;&lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msup&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ {}^{-} $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; for the asymmetric stretching mode is generated and the dynamics under the influence of an external polychromatic field is followed. The P.E.S. of [F-H-F]&lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msup&gt;\u0000 &lt;mrow&gt;&lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msup&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ {}^{-} $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; looks like a “flat-bed” single well where as for [F-H-F] it has a symmetrical double well structure. In absence of any external field these two surfaces are well separated. But in presence of external field transition from molecular anion &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ Big( $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;[F-H-F]&lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msup&gt;\u0000 &lt;mrow&gt;&lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msup&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ {}^{-} $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;\u0000 &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 ","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"124 15","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141778980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correlation between reactivity descriptors and electronic pressures: A different application of SBO orbitals 反应性描述符与电子压力之间的相关性:SBO 轨道的不同应用
IF 2.3 3区 化学
International Journal of Quantum Chemistry Pub Date : 2024-07-22 DOI: 10.1002/qua.27452
Víctor García, David Zorrilla, Manuel Fernández, Jesús Sánchez-Márquez
{"title":"Correlation between reactivity descriptors and electronic pressures: A different application of SBO orbitals","authors":"Víctor García,&nbsp;David Zorrilla,&nbsp;Manuel Fernández,&nbsp;Jesús Sánchez-Márquez","doi":"10.1002/qua.27452","DOIUrl":"10.1002/qua.27452","url":null,"abstract":"<p>This research has discovered relationships between atom reactivity parameters (such as electronegativity or hardness) and the pressure exerted on their electronic shells. These relationships are derived from the relationship between the radius of the atom confined within a spherical box and the pressure exerted on the box by its electrons. To determine the pressure corresponding to each radius, it was essential to formulate a set of new basis functions valid for calculating the energy of confined atoms. These new basis functions, Simplified Box Orbitals (SBOs), stem from the previously studied SBOs, but their coefficients are obtained variationally instead of being fitted to a Slater-Type Orbital (STO), and the powers (<i>R</i>−<i>r</i>)<sup><i>k</i></sup> are selected differently. These differences make them especially suitable for treating confined atoms and distinguishing between “hard” and “soft” confinements. This methodology has proven useful for accurately calculating the properties of various atoms under different pressures, namely H, He, Li, Be, B, C, N, O, F, and Ne. Furthermore, we believe that the new basis functions are suitable for obtaining Gaussian expansions that will enable the treatment of confined molecules, which we intend to study in a subsequent work.</p>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"124 15","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141778979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A DFT study to explore structural, elastic, mechanical, phonon, electronic and optical properties of halide perovskites AgXF 3 ( X = Be , Ca ) $$ {mathrm{AgXF}}_3left(mathrm{X}=mathrm{Be},mathrm{Ca}right) $$ with PBEsol, TB-mBJ and SCAN functionals 利用 PBEsol、TB-mBJ 和 SCAN 函数进行 DFT 研究,探索卤化物包晶 AgXF 3 ( X = Be , Ca ) $$ {mathrm{AgXF}}_3left(mathrm{X}=mathrm{Be},mathrm{Ca}right) $$ 的结构、弹性、机械、声子、电子和光学特性
IF 2.3 3区 化学
International Journal of Quantum Chemistry Pub Date : 2024-07-17 DOI: 10.1002/qua.27447
H. Bushra Munir, A. Afaq, Abdelaziz Gassoumi, Muhammad Ahmed, Abu Bakar
{"title":"A DFT study to explore structural, elastic, mechanical, phonon, electronic and optical properties of halide perovskites \u0000 \u0000 \u0000 \u0000 \u0000 AgXF\u0000 \u0000 \u0000 3\u0000 \u0000 \u0000 (\u0000 X\u0000 =\u0000 Be\u0000 ,\u0000 Ca\u0000 )\u0000 \u0000 $$ {mathrm{AgXF}}_3left(mathrm{X}=mathrm{Be},mathrm{Ca}right) $$\u0000 with PBEsol, TB-mBJ and SCAN functionals","authors":"H. Bushra Munir,&nbsp;A. Afaq,&nbsp;Abdelaziz Gassoumi,&nbsp;Muhammad Ahmed,&nbsp;Abu Bakar","doi":"10.1002/qua.27447","DOIUrl":"https://doi.org/10.1002/qua.27447","url":null,"abstract":"&lt;p&gt;First principles calculations have been performed using full potential linearized augmented plane wave, FP-LAPW, within Wien2k to elucidate structural, elastic, mechanical, phonon, electronic and optical properties of lead free halide perovskites &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mtext&gt;AgXF&lt;/mtext&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;3&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;X&lt;/mi&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;mi&gt;Be&lt;/mi&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mi&gt;Ca&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ {mathrm{AgXF}}_3left(mathrm{X}=mathrm{Be},mathrm{Ca}right) $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. The energy volume curve fitting is used to examine structural stability. For structural optimization and mechanical properties, we employed Perdew–Burke–Ernzerhof generalized gradient approximation and PBEsol, revised for solids, exchange and correlation functional. The optimized lattice constant of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mtext&gt;AgBeF&lt;/mtext&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;3&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ {mathrm{AgBeF}}_3 $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; and &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mtext&gt;AgCaF&lt;/mtext&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;3&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ {mathrm{AgCaF}}_3 $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is 3.631 and 4.349Å. The elastic constant &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mtext&gt;C&lt;/mtext&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;11&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ {mathrm{C}}_{11} $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mtext&gt;C&lt;/mtext&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;12&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ {mathrm{C}}_{12} $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; and &lt;span&gt;&lt;/sp","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"124 15","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141639510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信