Atomic Radii Derived From the Expectation Value r 4 $$ \left\langle {r}^4\right\rangle $$

IF 2.3 3区 化学 Q3 CHEMISTRY, PHYSICAL
Gerrit-Jan Linker, Marcel Swart, Piet Th. van Duijnen
{"title":"Atomic Radii Derived From the Expectation Value \n \n \n \n \n r\n 4\n \n \n \n $$ \\left\\langle {r}^4\\right\\rangle $$","authors":"Gerrit-Jan Linker,&nbsp;Marcel Swart,&nbsp;Piet Th. van Duijnen","doi":"10.1002/qua.70032","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The atomic radius as a fundamental chemical descriptor for the size of a chemical element is often used in physical chemistry. Many reference sets are available, based either on experiment or calculations. For example, Alvarez compiled a set of consistent van der Waals radii (<i>Dalton Trans.</i> <b>2013</b>, <i>42</i>, 8617) based on millions of measured interatomic non-bonded distances. In quantum mechanics, there are many ways in which the atom size can be defined and obtained because the atomic radius is not an observable. Here, we show that a theoretical measure can be based on expectation values such as <span></span><math>\n <semantics>\n <mrow>\n <mfenced>\n <msup>\n <mi>r</mi>\n <mn>2</mn>\n </msup>\n </mfenced>\n </mrow>\n <annotation>$$ \\left\\langle {r}^2\\right\\rangle $$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mfenced>\n <msup>\n <mi>r</mi>\n <mn>4</mn>\n </msup>\n </mfenced>\n </mrow>\n <annotation>$$ \\left\\langle {r}^4\\right\\rangle $$</annotation>\n </semantics></math>. These are easily obtained from atomic electric moments, routinely generated by popular quantum chemistry codes, with full control over electronic structure, charge, spin state, etc. As such we obtain a measure for the size of free atoms H to Xe and demonstrate linear scaling of atomic size in the series as outermost <i>s</i>, <i>p</i> or <i>d</i> subshells are filled according to the Madelung rule. Radii derived from <span></span><math>\n <semantics>\n <mrow>\n <mfenced>\n <msup>\n <mi>r</mi>\n <mn>4</mn>\n </msup>\n </mfenced>\n </mrow>\n <annotation>$$ \\left\\langle {r}^4\\right\\rangle $$</annotation>\n </semantics></math> compare best to Alvarez's empirical reference set of van der Waals radii, and atomic radii from theoretical sources. Known periodic trends of atomic radii are well reproduced by our data. Furthermore, we demonstrate the dependence of atomic size on the electronic structure and spin state for <i>d</i>-block elements.</p>\n </div>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"125 7","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quantum Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qua.70032","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The atomic radius as a fundamental chemical descriptor for the size of a chemical element is often used in physical chemistry. Many reference sets are available, based either on experiment or calculations. For example, Alvarez compiled a set of consistent van der Waals radii (Dalton Trans. 2013, 42, 8617) based on millions of measured interatomic non-bonded distances. In quantum mechanics, there are many ways in which the atom size can be defined and obtained because the atomic radius is not an observable. Here, we show that a theoretical measure can be based on expectation values such as r 2 $$ \left\langle {r}^2\right\rangle $$ and r 4 $$ \left\langle {r}^4\right\rangle $$ . These are easily obtained from atomic electric moments, routinely generated by popular quantum chemistry codes, with full control over electronic structure, charge, spin state, etc. As such we obtain a measure for the size of free atoms H to Xe and demonstrate linear scaling of atomic size in the series as outermost s, p or d subshells are filled according to the Madelung rule. Radii derived from r 4 $$ \left\langle {r}^4\right\rangle $$ compare best to Alvarez's empirical reference set of van der Waals radii, and atomic radii from theoretical sources. Known periodic trends of atomic radii are well reproduced by our data. Furthermore, we demonstrate the dependence of atomic size on the electronic structure and spin state for d-block elements.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Quantum Chemistry
International Journal of Quantum Chemistry 化学-数学跨学科应用
CiteScore
4.70
自引率
4.50%
发文量
185
审稿时长
2 months
期刊介绍: Since its first formulation quantum chemistry has provided the conceptual and terminological framework necessary to understand atoms, molecules and the condensed matter. Over the past decades synergistic advances in the methodological developments, software and hardware have transformed quantum chemistry in a truly interdisciplinary science that has expanded beyond its traditional core of molecular sciences to fields as diverse as chemistry and catalysis, biophysics, nanotechnology and material science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信