{"title":"First-Principles to Explore the Pressure on the Structural, Mechanical, Electronic Structure and Thermodynamic Properties of Nb2C","authors":"Qiang Fan, ShunRu Zhang, HaiJun Hou, Jianhui Yang","doi":"10.1002/qua.70040","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Nb<sub>2</sub>C has attracted particular attention in the field of elevated temperature, wear resistance, and corrosion resistance, owing to its unique physical and chemical properties. Currently, fewer efforts have been devoted to the exploration of its mechanical properties and thermodynamic response under elevated pressure. As a solution, theoretical calculations were employed to reveal the influence of increased pressure on the structural, mechanical, electronic, and thermodynamic properties of Nb<sub>2</sub>C. Elastic moduli were derived from elastic constants, whereas Poisson's ratio, sound velocity, and Debye temperature were determined using the obtained elastic moduli and constants. The investigation focused on the analysis of elastic anisotropy through the utilization of various indexes for elastic anisotropy, as well as the construction of three-dimensional (3D) surfaces and their planar projections. The analysis of the electronic characteristics indicates that Nb<sub>2</sub>C displays a metallic behavior. Moreover, the hardness <i>H</i><sub>v</sub> and thermal conductivity <i>k</i> were evaluated by different methods.</p>\n </div>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"125 7","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quantum Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qua.70040","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Nb2C has attracted particular attention in the field of elevated temperature, wear resistance, and corrosion resistance, owing to its unique physical and chemical properties. Currently, fewer efforts have been devoted to the exploration of its mechanical properties and thermodynamic response under elevated pressure. As a solution, theoretical calculations were employed to reveal the influence of increased pressure on the structural, mechanical, electronic, and thermodynamic properties of Nb2C. Elastic moduli were derived from elastic constants, whereas Poisson's ratio, sound velocity, and Debye temperature were determined using the obtained elastic moduli and constants. The investigation focused on the analysis of elastic anisotropy through the utilization of various indexes for elastic anisotropy, as well as the construction of three-dimensional (3D) surfaces and their planar projections. The analysis of the electronic characteristics indicates that Nb2C displays a metallic behavior. Moreover, the hardness Hv and thermal conductivity k were evaluated by different methods.
期刊介绍:
Since its first formulation quantum chemistry has provided the conceptual and terminological framework necessary to understand atoms, molecules and the condensed matter. Over the past decades synergistic advances in the methodological developments, software and hardware have transformed quantum chemistry in a truly interdisciplinary science that has expanded beyond its traditional core of molecular sciences to fields as diverse as chemistry and catalysis, biophysics, nanotechnology and material science.