{"title":"Ab Initio Study of the Magnetic and Electronic Properties of C6N6 Nanoribbons","authors":"Adeleh Vatankhahan, Tayebeh Movlarooy","doi":"10.1002/qua.70027","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The effect of ribbon width and edge shape on the electronic and magnetic properties of C<sub>6</sub>N<sub>6</sub> nanoribbons has been examined using density functional theory (DFT). The results indicate that all the considered C<sub>6</sub>N<sub>6</sub> nanoribbons are energetically stable, and hydrogenation increases their stability while eliminating their magnetic properties. As the ribbon width increases, the energy gap decreases. The findings suggest that the band gap can be tuned by altering the edge shape and ribbon width. Consequently, the studied nanoribbons are promising candidates for optoelectronic and spintronic devices.</p>\n </div>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"125 8","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quantum Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qua.70027","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The effect of ribbon width and edge shape on the electronic and magnetic properties of C6N6 nanoribbons has been examined using density functional theory (DFT). The results indicate that all the considered C6N6 nanoribbons are energetically stable, and hydrogenation increases their stability while eliminating their magnetic properties. As the ribbon width increases, the energy gap decreases. The findings suggest that the band gap can be tuned by altering the edge shape and ribbon width. Consequently, the studied nanoribbons are promising candidates for optoelectronic and spintronic devices.
期刊介绍:
Since its first formulation quantum chemistry has provided the conceptual and terminological framework necessary to understand atoms, molecules and the condensed matter. Over the past decades synergistic advances in the methodological developments, software and hardware have transformed quantum chemistry in a truly interdisciplinary science that has expanded beyond its traditional core of molecular sciences to fields as diverse as chemistry and catalysis, biophysics, nanotechnology and material science.