Mammalian GenomePub Date : 2024-09-01Epub Date: 2024-06-04DOI: 10.1007/s00335-024-10043-6
Yunjia Song, Shuo Cao, Xutao Sun, Guozhen Chen
{"title":"The interplay of hydrogen sulfide and microRNAs in cardiovascular diseases: insights and future perspectives.","authors":"Yunjia Song, Shuo Cao, Xutao Sun, Guozhen Chen","doi":"10.1007/s00335-024-10043-6","DOIUrl":"10.1007/s00335-024-10043-6","url":null,"abstract":"<p><p>Hydrogen sulfide (H<sub>2</sub>S) is recognized as the third gasotransmitter, after nitric oxide (NO) and carbon monoxide (CO). It is known for its cardioprotective properties, including the relaxation of blood vessels, promotion of angiogenesis, regulation of myocardial cell apoptosis, inhibition of vascular smooth muscle cell proliferation, and reduction of inflammation. Additionally, abnormal H<sub>2</sub>S generation has been linked to the development of cardiovascular diseases (CVD), such as pulmonary hypertension, hypertension, atherosclerosis, vascular calcification, and myocardial injury. MicroRNAs (miRNAs) are non-coding, conserved, and versatile molecules that primarily influence gene expression by repressing translation and have emerged as biomarkers for CVD diagnosis. Studies have demonstrated that H<sub>2</sub>S can ameliorate cardiac dysfunction by regulating specific miRNAs, and certain miRNAs can also regulate H<sub>2</sub>S synthesis. The crosstalk between miRNAs and H<sub>2</sub>S offers a novel perspective for investigating the pathophysiology, prevention, and treatment of CVD. The present analysis outlines the interactions between H<sub>2</sub>S and miRNAs and their influence on CVD, providing insights into their future potential and advancement.</p>","PeriodicalId":18259,"journal":{"name":"Mammalian Genome","volume":" ","pages":"309-323"},"PeriodicalIF":2.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141248187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Genomic patterns of selection in morphometric traits across diverse Indian cattle breeds.","authors":"Divya Rajawat, Sonali Sonejita Nayak, Karan Jain, Anurodh Sharma, Subhashree Parida, Sarada Prasanna Sahoo, Bharat Bhushan, D B Patil, Triveni Dutt, Manjit Panigrahi","doi":"10.1007/s00335-024-10047-2","DOIUrl":"10.1007/s00335-024-10047-2","url":null,"abstract":"<p><p>This study seeks a comprehensive exploration of genome-wide selective processes impacting morphometric traits across diverse cattle breeds, utilizing an array of statistical methods. Morphometric traits, encompassing both qualitative and quantitative variables, play a pivotal role in characterizing and selecting livestock breeds based on their external appearance, size, and physical attributes. While qualitative traits, such as color, horn structure, and coat type, contribute to adaptive features and breed identification, quantitative traits like body weight and conformation measurements bear a closer correlation with production characteristics. This study employs advanced genotyping technologies, including the Illumina BovineSNP50 Bead Chip and next-generation sequencing methods like Reduced Representation sequencing, to identify genomic signatures associated with these traits. We applied four intra-population methods to find evidence of selection, such as Tajima's D, CLR, iHS, and ROH. We found a total of 40 genes under the selection signature, that were associated with morphometric traits in five cattle breeds (Kankrej, Tharparkar, Nelore, Sahiwal, and Gir). Crucial genes such as ADIPDQ, DPP6, INSIG1, SLC35D2 in Kankrej, LPL, ATP6V1B2, CDC14B in Tharparkar, HPSE2, PLAG1 in Nelore, PCSK1, PRKD1 in Sahiwal, and GNAQ, HPCAL1 in Gir were identified in our study. This approach provides valuable insights into the genetic basis of variations in body weight and conformation traits, facilitating informed selection processes and offering a deeper understanding of the evolutionary and domestication processes in diverse cattle breeds.</p>","PeriodicalId":18259,"journal":{"name":"Mammalian Genome","volume":" ","pages":"377-389"},"PeriodicalIF":2.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141627048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mammalian GenomePub Date : 2024-09-01Epub Date: 2024-06-18DOI: 10.1007/s00335-024-10048-1
Sonika Ahlawat, Upasna Sharma, Pooja Chhabra, Reena Arora, Rekha Sharma, Karan Veer Singh, R K Vijh
{"title":"Maternal genetic diversity and phylogenetic analysis of Indian riverine and swamp buffaloes: insights from complete mitochondrial genomes.","authors":"Sonika Ahlawat, Upasna Sharma, Pooja Chhabra, Reena Arora, Rekha Sharma, Karan Veer Singh, R K Vijh","doi":"10.1007/s00335-024-10048-1","DOIUrl":"10.1007/s00335-024-10048-1","url":null,"abstract":"<p><p>This study explored the genetic diversity and evolutionary history of riverine and swamp buffaloes in India, utilizing complete mitochondrial genome sequences. Through comprehensive sampling across varied agro-climatic zones, including 91 riverine buffaloes from 12 breeds and 6 non-descript populations, along with 16 swamp buffaloes of the Luit breed, this study employed next-generation sequencing techniques to map the mitogenomic landscape of these subspecies. Sequence alignments were performed with the buffalo mitochondrial reference genome to identify mitochondrial DNA (mtDNA) variations and distinct maternal haplogroups among Indian buffaloes. The results uncovered the existence of 212 variable sites in riverine buffaloes, yielding 67 haplotypes with high haplotype diversity (0.991), and in swamp buffaloes, 194 variable sites resulting in 12 haplotypes, displaying haplotype diversity of 0.950. Phylogenetic analyses elucidated the genetic relationships between Indian buffaloes and the recognized global haplogroups, categorizing Indian swamp buffaloes predominantly into the SA haplogroup. Intriguingly, the haplogroup SB2b was observed for the first time in swamp buffaloes. Conversely, riverine buffaloes conformed to established sub-haplogroups RB1, RB2, and RB3, underscoring the notion of Northwestern India as a pivotal domestication site for riverine buffaloes. The study supports the hypothesis of independent domestication events for riverine and swamp buffaloes, highlighting the critical role of genetic analysis in unraveling the complex evolutionary pathways of domestic animals. This investigation contributes to the global understanding of buffalo mitogenome diversity, offering insights into this important livestock species' domestication and dispersal patterns.</p>","PeriodicalId":18259,"journal":{"name":"Mammalian Genome","volume":" ","pages":"390-398"},"PeriodicalIF":2.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141419784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mammalian GenomePub Date : 2024-09-01Epub Date: 2024-06-05DOI: 10.1007/s00335-024-10045-4
Jung Han Kim, Marvin A Simpkins, Nicholas T Williams, Emma Cimino, Jadyn Simon, Tanner R Richmond, Jared Youther, Hannah Slutz, James Denvir
{"title":"Tachol1 QTL on mouse chromosome 1 is responsible for hypercholesterolemia and diet-induced obesity.","authors":"Jung Han Kim, Marvin A Simpkins, Nicholas T Williams, Emma Cimino, Jadyn Simon, Tanner R Richmond, Jared Youther, Hannah Slutz, James Denvir","doi":"10.1007/s00335-024-10045-4","DOIUrl":"10.1007/s00335-024-10045-4","url":null,"abstract":"<p><p>Hypercholesterolemia raises the risk for cardiovascular complications and overall health. Hypercholesterolemia is common, affecting 10% of the general population of the US, and heritable. Most individuals with hypercholesterolemia have a polygenic predisposition to the condition. Previously we identified a quantitative trait locus, Tachol1, linked to hypercholesterolemia on mouse chromosome 1 (Chr1) in a cross between C57BL/6J (B6) and TALLYHO/JngJ (TH) mice, a polygenic model for human obesity, type 2 diabetes and hyperlipidemia. Subsequently, using congenic mice that carry a TH-derived genomic segment of Chr1 on a B6 background, we demonstrated that the distal segment of Chr1, where Tachol1 maps, is necessary to cause hypercholesterolemia, as well as diet-induced obesity. In this study, we generated overlapping subcongenic lines to the distal segment of congenic region and characterized subcongenic mice carrying the smallest TH region of Tachol1, ~ 16.2 Mb in size (B6.TH-Chr1-16.2 Mb). Both male and female B6.TH-Chr1-16.2 Mb mice showed a significantly increased plasma total cholesterol levels compared to B6 on both chow and high fat (HF) diet. B6.TH-Chr1-16.2 Mb mice also had greater fat mass than B6 on HF diet, without increasing food intake. The gene and protein expression levels of absent in melanoma 2 (Aim2) gene were significantly upregulated in B6.TH-Chr1-16.2 Mb mice compared to B6. In summary, we confirmed the effect of Tachol1 on hypercholesterolemia and diet-induced obesity using subcongenic analysis.</p>","PeriodicalId":18259,"journal":{"name":"Mammalian Genome","volume":" ","pages":"324-333"},"PeriodicalIF":2.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11339885/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141248185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mammalian GenomePub Date : 2024-09-01Epub Date: 2024-06-11DOI: 10.1007/s00335-024-10046-3
Nicole A Hawkins, Nathan Speakes, Jennifer A Kearney
{"title":"Fine mapping and candidate gene analysis of Dravet syndrome modifier loci on mouse chromosomes 7 and 8.","authors":"Nicole A Hawkins, Nathan Speakes, Jennifer A Kearney","doi":"10.1007/s00335-024-10046-3","DOIUrl":"10.1007/s00335-024-10046-3","url":null,"abstract":"<p><p>Dravet syndrome is a developmental and epileptic encephalopathy (DEE) characterized by intractable seizures, comorbidities related to developmental, cognitive, and motor delays, and a high mortality burden due to sudden unexpected death in epilepsy (SUDEP). Most Dravet syndrome cases are attributed to SCN1A haploinsufficiency, with genetic modifiers and environmental factors influencing disease severity. Mouse models with heterozygous deletion of Scn1a recapitulate key features of Dravet syndrome, including seizures and premature mortality; however, severity varies depending on genetic background. Here, we refined two Dravet survival modifier (Dsm) loci, Dsm2 on chromosome 7 and Dsm3 on chromosome 8, using interval-specific congenic (ISC) mapping. Dsm2 was complex and encompassed at least two separate loci, while Dsm3 was refined to a single locus. Candidate modifier genes within these refined loci were prioritized based on brain expression, strain-dependent differences, and biological relevance to seizures or epilepsy. High priority candidate genes for Dsm2 include Nav2, Ptpn5, Ldha, Dbx1, Prmt3 and Slc6a5, while Dsm3 has a single high priority candidate, Psd3. This study underscores the complex genetic architecture underlying Dravet syndrome and provides insights into potential modifier genes that could influence disease severity and serve as novel therapeutic targets.</p>","PeriodicalId":18259,"journal":{"name":"Mammalian Genome","volume":" ","pages":"334-345"},"PeriodicalIF":2.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11329421/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141306268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mammalian GenomePub Date : 2024-09-01Epub Date: 2024-06-17DOI: 10.1007/s00335-024-10042-7
Conghan Li, Panyin Shu, Taiyu Shi, Yuerong Chen, Ping Mei, Yizhong Zhang, Yan Wang, Xinyan Du, Jianning Wang, Yixin Zhang, Bin Liu, Zhijin Sheng, Shixin Chan, Zhangyong Dan
{"title":"Predicting the potential deterioration of Barrett's esophagus based on gut microbiota: a Mendelian randomization analysis.","authors":"Conghan Li, Panyin Shu, Taiyu Shi, Yuerong Chen, Ping Mei, Yizhong Zhang, Yan Wang, Xinyan Du, Jianning Wang, Yixin Zhang, Bin Liu, Zhijin Sheng, Shixin Chan, Zhangyong Dan","doi":"10.1007/s00335-024-10042-7","DOIUrl":"10.1007/s00335-024-10042-7","url":null,"abstract":"<p><p>Esophageal adenocarcinoma (EAC) is one of the most malignant tumors in the digestive system. To make thing worse, the scarcity of treatment options is disheartening. However, if detected early, there is a possibility of reversing the condition. Unfortunately, there is still a lack of relevant early screening methods. Considering that Barrett's esophagus (BE), a precursor lesion of EAC, has been confirmed as the only known precursor of EAC. Analyzing which BE cases will progress to EAC and understanding the processes and mechanisms involved is of great significance for early screening of such patients. Considering the significant alterations in the gut microbiota of patients with BE and its potential role in the progression to EAC, this study aims to analyze the relationship between BE, EAC, and GM to identify potential diagnostic biomarkers and therapeutic targets. This study utilized comprehensive statistical data on gut microbiota from a large-scale genome-wide association meta-analysis conducted by the MiBioGen consortium (n = 18,340). Subsequently, we selected a set of single nucleotide polymorphisms (SNPs) that fell below the genome-wide significance threshold (1 × 10-5) as instrumental variables. To investigate the causal relationship between gut microbiota and BE and EAC, we employed various MR analysis methods, including Inverse Variance Weighting (IVW), MR-Egger regression, weighted median (WM), and weighted mean. Additionally, we assessed the level of pleiotropy, heterogeneity, and stability of genetic variations through MR-Egger intercept test, MR-PRESSO, Cochran's Q test, and \"leave-one-out\" sensitivity analysis. Furthermore, we conducted reverse MR analysis to identify the causal relationships between gut microbiota and BE and EAC. The results from the Inverse Variance-Weighted (IVW) analysis indicate that Alistipes (P = 4.86 × 10<sup>-2</sup>), Lactobacillus (P = 2.11 × 10<sup>-2</sup>), Prevotella 7 (P = 4.28 × 10<sup>-2</sup>), and RuminococcaceaeUCG004 (P = 4.34 × 10<sup>-2</sup>) are risk factors for Barrett's esophagus (BE), while Flavonifractor (P = 8.81 × 10<sup>-3</sup>) and RuminococcaceaeUCG004 (P = 4.99 × 10<sup>-2</sup>) are risk factors for esophageal adenocarcinoma (EAC). On the other hand, certain gut microbiota genera appear to have a protective effect against both BE and EAC. These include Eubacterium (nodatum group) (P = 4.51 × 10<sup>-2</sup>), Holdemania (P = 1.22 × 10<sup>-2</sup>), and Lactococcus (P = 3.39 × 10<sup>-2</sup>) in the BE cohort, as well as Eubacterium (hallii group) (P = 4.07 × 10<sup>-2</sup>) and Actinomyces (P = 3.62 × 10<sup>-3</sup>) in the EAC cohort. According to the results of reverse MR analysis, no significant causal effects of BE and EAC on gut microbiota were observed. Furthermore, no significant heterogeneity or pleiotropy was detected in the instrumental variables. We have established a causal relationship between the gut microbiota and BE and EAC. This study holds profound si","PeriodicalId":18259,"journal":{"name":"Mammalian Genome","volume":" ","pages":"399-413"},"PeriodicalIF":2.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141419785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Assessing the causal relationship between immune cells and prostatitis: evidence from bidirectional mendelian randomization analysis.","authors":"Genyi Qu, Weimin Jiang, Zhaohui Long, Xing Zhou, Yijie Wang, Guang Yang, Cheng Tang, Yong Xu","doi":"10.1007/s00335-024-10044-5","DOIUrl":"10.1007/s00335-024-10044-5","url":null,"abstract":"<p><p>Prostatitis represents a common disease of the male genitourinary system, significantly impacting the physical and mental health of male patients. While numerous studies have suggested a potential link between immune cell activity and prostatitis, the exact causal role of immune cells in prostatitis remains uncertain. This study aims to explore the causal relationship between immune cell characteristics and prostatitis using a bidirectional Mendelian randomization approach. This study utilizes data from the public GWAS database and employs bidirectional Mendelian randomization analysis to investigate the causal relationship between immune cells and prostatitis. The causal relationship between 731 immune cell features and prostatitis was primarily investigated through inverse variance weighting (IVW), complemented by MR-Egger regression, a simple model, the weighted median method, and a weighted model. Ultimately, the results underwent sensitivity analysis to assess the heterogeneity, horizontal pleiotropy, and stability of Single Nucleotide Polymorphisms (SNPs) in immune cells and prostatitis. MR analysis revealed 17 immune cells exhibiting significant causal effects on prostatitis. In contrast, findings from reverse MR indicated a significant causal relationship between prostatitis and 13 immune cells. Our study utilizes bidirectional Mendelian Randomization to establish causal relationships between specific immune cell phenotypes and prostatitis, highlighting the reciprocal influence between immune system behavior and the disease. Our findings suggest targeted therapeutic approaches and the importance of including diverse populations for broader validation and personalized treatment strategies.</p>","PeriodicalId":18259,"journal":{"name":"Mammalian Genome","volume":" ","pages":"474-483"},"PeriodicalIF":2.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141179799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mammalian GenomePub Date : 2024-09-01Epub Date: 2024-08-08DOI: 10.1007/s00335-024-10055-2
Hongmei Guo, Wanli Li, Zhigang Yang, Xiaobin Xing
{"title":"E3 ubiquitin ligase MARCH1 reduces inflammation and pyroptosis in cerebral ischemia-reperfusion injury via PCSK9 downregulation.","authors":"Hongmei Guo, Wanli Li, Zhigang Yang, Xiaobin Xing","doi":"10.1007/s00335-024-10055-2","DOIUrl":"10.1007/s00335-024-10055-2","url":null,"abstract":"<p><p>Pyroptosis has been regarded as caspase-1-mediated monocyte death that induces inflammation, showing a critical and detrimental role in the development of cerebral ischemia-reperfusion injury (IRI). MARCH1 is an E3 ubiquitin ligase that exerts potential anti-inflammatory functions. Therefore, the study probed into the significance of MARCH1 in inflammation and pyroptosis elicited by cerebral IRI. Middle cerebral artery occlusion/reperfusion (MCAO/R)-treated mice and oxygen glucose deprivation/reoxygenation (OGD/R)-treated hippocampal neurons were established to simulate cerebral IRI in vivo and in vitro. MARCH1 and PCSK9 expression was tested in MCAO/R-operated mice, and their interaction was identified by means of the cycloheximide assay and co-immunoprecipitation. The functional roles of MARCH1 and PCSK9 in cerebral IRI were subsequently determined by examining the neurological function, brain tissue changes, neuronal viability, inflammation, and pyroptosis through ectopic expression and knockdown experiments. PCSK9 expression was increased in the brain tissues of MCAO/R mice, while PCSK9 knockdown reduced brain damage and neurological deficits. Additionally, inflammation and pyroptosis were inhibited in OGD/R-exposed hippocampal neurons upon PCSK9 knockdown, accompanied by LDLR upregulation and NLRP3 inflammasome inactivation. Mechanistic experiments revealed that MARCH1 mediated ubiquitination and degradation of PCSK9, lowering PCSK9 protein expression. Furthermore, it was demonstrated that MARCH1 suppressed inflammation and pyroptosis after cerebral IRI by downregulating PCSK9 both in vivo and in vitro. Taken together, the present study demonstrate the protective effect of MARCH1 against cerebral IRI through PCSK9 downregulation, which might contribute to the discovery of new therapies for improving cerebral IRI.</p>","PeriodicalId":18259,"journal":{"name":"Mammalian Genome","volume":" ","pages":"346-361"},"PeriodicalIF":2.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141902199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mammalian GenomePub Date : 2024-09-01Epub Date: 2024-07-03DOI: 10.1007/s00335-024-10050-7
Marcelo Francia, Merel Bot, Toni Boltz, Juan F De la Hoz, Marco Boks, René S Kahn, Roel A Ophoff
{"title":"Fibroblasts as an in vitro model of circadian genetic and genomic studies.","authors":"Marcelo Francia, Merel Bot, Toni Boltz, Juan F De la Hoz, Marco Boks, René S Kahn, Roel A Ophoff","doi":"10.1007/s00335-024-10050-7","DOIUrl":"10.1007/s00335-024-10050-7","url":null,"abstract":"<p><p>Bipolar disorder (BD) is a heritable disorder characterized by shifts in mood that manifest in manic or depressive episodes. Clinical studies have identified abnormalities of the circadian system in BD patients as a hallmark of underlying pathophysiology. Fibroblasts are a well-established in vitro model for measuring circadian patterns. We set out to examine the underlying genetic architecture of circadian rhythm in fibroblasts, with the goal to assess its contribution to the polygenic nature of BD disease risk. We collected, from primary cell lines of 6 healthy individuals, temporal genomic features over a 48 h period from transcriptomic data (RNA-seq) and open chromatin data (ATAC-seq). The RNA-seq data showed that only a limited number of genes, primarily the known core clock genes such as ARNTL, CRY1, PER3, NR1D2 and TEF display circadian patterns of expression consistently across cell cultures. The ATAC-seq data identified that distinct transcription factor families, like those with the basic helix-loop-helix motif, were associated with regions that were increasing in accessibility over time. Whereas known glucocorticoid receptor target motifs were identified in those regions that were decreasing in accessibility. Further evaluation of these regions using stratified linkage disequilibrium score regression analysis failed to identify a significant presence of them in the known genetic architecture of BD, and other psychiatric disorders or neurobehavioral traits in which the circadian rhythm is affected. In this study, we characterize the biological pathways that are activated in this in vitro circadian model, evaluating the relevance of these processes in the context of the genetic architecture of BD and other disorders, highlighting its limitations and future applications for circadian genomic studies.</p>","PeriodicalId":18259,"journal":{"name":"Mammalian Genome","volume":" ","pages":"432-444"},"PeriodicalIF":2.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11329553/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141498399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mammalian GenomePub Date : 2024-09-01Epub Date: 2024-07-19DOI: 10.1007/s00335-024-10053-4
Hande Çubukcu, Gülşah Merve Kılınç
{"title":"Evaluation of genotype imputation using Glimpse tools on low coverage ancient DNA.","authors":"Hande Çubukcu, Gülşah Merve Kılınç","doi":"10.1007/s00335-024-10053-4","DOIUrl":"10.1007/s00335-024-10053-4","url":null,"abstract":"<p><p>Ancient DNA provides a unique frame for directly studying human population genetics in time and space. Still, since most of the ancient genomic data is low coverage, analysis is confronted with a low number of SNPs, genotype uncertainties, and reference-bias. Here, we for the first time benchmark the two distinct versions of Glimpse tools on 120 ancient human genomes from Eurasia including those largely from previously under-evaluated regions and compare the performance of genotype imputation with de facto analysis approaches for low coverage genomic data analysis. We further investigate the impact of two distinct reference panels on imputation accuracy for low coverage genomic data. We compute accuracy statistics and perform PCA and f<sub>4</sub>-statistics to explore the behaviour of genotype imputation on low coverage data regarding (i)two versions of Glimpse, (ii)two reference panels, (iii)four post-imputation filters and coverages, as well as (iv)data type and geographical origin of the samples on the analyses. Our results reveal that even for 0.1X coverage ancient human genomes, genotype imputation using Glimpse-v2 is suitable. Additionally, using the 1000 Genomes merged with Human Genome Diversity Panel improves the accuracy of imputation for the rare variants with low MAF, which might be important not only for ancient genomics but also for modern human genomic studies based on low coverage data and for haplotype-based analysis. Most importantly, we reveal that genotype imputation of low coverage ancient human genomes reduces the genetic affinity of the samples towards human reference genome. Through solving one of the most challenging biases in data analysis, so-called reference bias, genotype imputation using Glimpse v2 is promising for low coverage ancient human genomic data analysis and for rare-variant-based and haplotype-based analysis.</p>","PeriodicalId":18259,"journal":{"name":"Mammalian Genome","volume":" ","pages":"461-473"},"PeriodicalIF":2.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141723852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}