Jung Han Kim, Marvin A Simpkins, Nicholas T Williams, Emma Cimino, Jadyn Simon, Tanner R Richmond, Jared Youther, Hannah Slutz, James Denvir
{"title":"小鼠 1 号染色体上的 Tachol1 QTL 是导致高胆固醇血症和饮食诱发肥胖的原因。","authors":"Jung Han Kim, Marvin A Simpkins, Nicholas T Williams, Emma Cimino, Jadyn Simon, Tanner R Richmond, Jared Youther, Hannah Slutz, James Denvir","doi":"10.1007/s00335-024-10045-4","DOIUrl":null,"url":null,"abstract":"<p><p>Hypercholesterolemia raises the risk for cardiovascular complications and overall health. Hypercholesterolemia is common, affecting 10% of the general population of the US, and heritable. Most individuals with hypercholesterolemia have a polygenic predisposition to the condition. Previously we identified a quantitative trait locus, Tachol1, linked to hypercholesterolemia on mouse chromosome 1 (Chr1) in a cross between C57BL/6J (B6) and TALLYHO/JngJ (TH) mice, a polygenic model for human obesity, type 2 diabetes and hyperlipidemia. Subsequently, using congenic mice that carry a TH-derived genomic segment of Chr1 on a B6 background, we demonstrated that the distal segment of Chr1, where Tachol1 maps, is necessary to cause hypercholesterolemia, as well as diet-induced obesity. In this study, we generated overlapping subcongenic lines to the distal segment of congenic region and characterized subcongenic mice carrying the smallest TH region of Tachol1, ~ 16.2 Mb in size (B6.TH-Chr1-16.2 Mb). Both male and female B6.TH-Chr1-16.2 Mb mice showed a significantly increased plasma total cholesterol levels compared to B6 on both chow and high fat (HF) diet. B6.TH-Chr1-16.2 Mb mice also had greater fat mass than B6 on HF diet, without increasing food intake. The gene and protein expression levels of absent in melanoma 2 (Aim2) gene were significantly upregulated in B6.TH-Chr1-16.2 Mb mice compared to B6. In summary, we confirmed the effect of Tachol1 on hypercholesterolemia and diet-induced obesity using subcongenic analysis.</p>","PeriodicalId":18259,"journal":{"name":"Mammalian Genome","volume":" ","pages":"324-333"},"PeriodicalIF":2.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11339885/pdf/","citationCount":"0","resultStr":"{\"title\":\"Tachol1 QTL on mouse chromosome 1 is responsible for hypercholesterolemia and diet-induced obesity.\",\"authors\":\"Jung Han Kim, Marvin A Simpkins, Nicholas T Williams, Emma Cimino, Jadyn Simon, Tanner R Richmond, Jared Youther, Hannah Slutz, James Denvir\",\"doi\":\"10.1007/s00335-024-10045-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hypercholesterolemia raises the risk for cardiovascular complications and overall health. Hypercholesterolemia is common, affecting 10% of the general population of the US, and heritable. Most individuals with hypercholesterolemia have a polygenic predisposition to the condition. Previously we identified a quantitative trait locus, Tachol1, linked to hypercholesterolemia on mouse chromosome 1 (Chr1) in a cross between C57BL/6J (B6) and TALLYHO/JngJ (TH) mice, a polygenic model for human obesity, type 2 diabetes and hyperlipidemia. Subsequently, using congenic mice that carry a TH-derived genomic segment of Chr1 on a B6 background, we demonstrated that the distal segment of Chr1, where Tachol1 maps, is necessary to cause hypercholesterolemia, as well as diet-induced obesity. In this study, we generated overlapping subcongenic lines to the distal segment of congenic region and characterized subcongenic mice carrying the smallest TH region of Tachol1, ~ 16.2 Mb in size (B6.TH-Chr1-16.2 Mb). Both male and female B6.TH-Chr1-16.2 Mb mice showed a significantly increased plasma total cholesterol levels compared to B6 on both chow and high fat (HF) diet. B6.TH-Chr1-16.2 Mb mice also had greater fat mass than B6 on HF diet, without increasing food intake. The gene and protein expression levels of absent in melanoma 2 (Aim2) gene were significantly upregulated in B6.TH-Chr1-16.2 Mb mice compared to B6. In summary, we confirmed the effect of Tachol1 on hypercholesterolemia and diet-induced obesity using subcongenic analysis.</p>\",\"PeriodicalId\":18259,\"journal\":{\"name\":\"Mammalian Genome\",\"volume\":\" \",\"pages\":\"324-333\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11339885/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mammalian Genome\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00335-024-10045-4\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mammalian Genome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00335-024-10045-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Tachol1 QTL on mouse chromosome 1 is responsible for hypercholesterolemia and diet-induced obesity.
Hypercholesterolemia raises the risk for cardiovascular complications and overall health. Hypercholesterolemia is common, affecting 10% of the general population of the US, and heritable. Most individuals with hypercholesterolemia have a polygenic predisposition to the condition. Previously we identified a quantitative trait locus, Tachol1, linked to hypercholesterolemia on mouse chromosome 1 (Chr1) in a cross between C57BL/6J (B6) and TALLYHO/JngJ (TH) mice, a polygenic model for human obesity, type 2 diabetes and hyperlipidemia. Subsequently, using congenic mice that carry a TH-derived genomic segment of Chr1 on a B6 background, we demonstrated that the distal segment of Chr1, where Tachol1 maps, is necessary to cause hypercholesterolemia, as well as diet-induced obesity. In this study, we generated overlapping subcongenic lines to the distal segment of congenic region and characterized subcongenic mice carrying the smallest TH region of Tachol1, ~ 16.2 Mb in size (B6.TH-Chr1-16.2 Mb). Both male and female B6.TH-Chr1-16.2 Mb mice showed a significantly increased plasma total cholesterol levels compared to B6 on both chow and high fat (HF) diet. B6.TH-Chr1-16.2 Mb mice also had greater fat mass than B6 on HF diet, without increasing food intake. The gene and protein expression levels of absent in melanoma 2 (Aim2) gene were significantly upregulated in B6.TH-Chr1-16.2 Mb mice compared to B6. In summary, we confirmed the effect of Tachol1 on hypercholesterolemia and diet-induced obesity using subcongenic analysis.
期刊介绍:
Mammalian Genome focuses on the experimental, theoretical and technical aspects of genetics, genomics, epigenetics and systems biology in mouse, human and other mammalian species, with an emphasis on the relationship between genotype and phenotype, elucidation of biological and disease pathways as well as experimental aspects of interventions, therapeutics, and precision medicine. The journal aims to publish high quality original papers that present novel findings in all areas of mammalian genetic research as well as review articles on areas of topical interest. The journal will also feature commentaries and editorials to inform readers of breakthrough discoveries as well as issues of research standards, policies and ethics.