Mammalian Genome最新文献

筛选
英文 中文
Genes related to microglia polarization and immune infiltration in Alzheimer's Disease. 与阿尔茨海默病中小胶质细胞极化和免疫浸润有关的基因。
IF 2.7 4区 生物学
Mammalian Genome Pub Date : 2024-12-01 Epub Date: 2024-10-10 DOI: 10.1007/s00335-024-10073-0
Dianxia Xing, Wenjin Zhang, Yan Liu, Hong Huang, Junjie Xie
{"title":"Genes related to microglia polarization and immune infiltration in Alzheimer's Disease.","authors":"Dianxia Xing, Wenjin Zhang, Yan Liu, Hong Huang, Junjie Xie","doi":"10.1007/s00335-024-10073-0","DOIUrl":"10.1007/s00335-024-10073-0","url":null,"abstract":"<p><p>Alzheimer's Disease (AD) remains a significant challenge due to its complex etiology and socio-economic burden. In this study, we investigated the roles of macrophage polarization-related hub genes in AD pathology, focusing on their impact on immune infiltration and gene regulation in distinct brain regions. Using Gene Expression Omnibus (GEO) datasets GSE110226 (choroid plexus) and GSE1297 (hippocampal CA1), we identified key genes-EDN1, HHLA2, KL, TREM2, and WWTR1-associated with AD mechanisms and immune responses. Based on these findings, we developed a diagnostic model demonstrating favorable calibration and clinical applicability. Furthermore, we explored molecular interactions within mRNA-transcription factor and mRNA-miRNA regulatory networks, providing deeper insights into AD progression and identifying potential therapeutic targets. The novel identification of WWTR1 and HHLA2 as biomarkers expands the diagnostic toolkit for AD, offering new perspectives on the disease's underlying immune dynamics. However, external dataset validation and further in vitro and in vivo studies are required to confirm these results and their clinical relevance.</p>","PeriodicalId":18259,"journal":{"name":"Mammalian Genome","volume":" ","pages":"749-763"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142400697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comprehensive review of livestock development: insights into domestication, phylogenetics, diversity, and genomic advances. 家畜发展的全面回顾:对驯化、系统发育、多样性和基因组进展的见解。
IF 2.7 4区 生物学
Mammalian Genome Pub Date : 2024-12-01 Epub Date: 2024-10-14 DOI: 10.1007/s00335-024-10075-y
Sonali Sonejita Nayak, Divya Rajawat, Karan Jain, Anurodh Sharma, Cedric Gondro, Ayon Tarafdar, Triveni Dutt, Manjit Panigrahi
{"title":"A comprehensive review of livestock development: insights into domestication, phylogenetics, diversity, and genomic advances.","authors":"Sonali Sonejita Nayak, Divya Rajawat, Karan Jain, Anurodh Sharma, Cedric Gondro, Ayon Tarafdar, Triveni Dutt, Manjit Panigrahi","doi":"10.1007/s00335-024-10075-y","DOIUrl":"10.1007/s00335-024-10075-y","url":null,"abstract":"<p><p>Livestock plays an essential role in sustaining human livelihoods, offering a diverse range of species integral to food security, economic stability, and cultural traditions. The domestication of livestock, which began over 10,000 years ago, has driven significant genetic changes in species such as cattle, buffaloes, sheep, goats, and pigs. Recent advancements in genomic technologies, including next-generation sequencing (NGS), genome-wide association studies (GWAS), and genomic selection, have dramatically enhanced our understanding of these genetic developments. This review brings together key research on the domestication process, phylogenetics, genetic diversity, and selection signatures within major livestock species. It emphasizes the importance of admixture studies and evolutionary forces like natural selection, genetic drift, and gene flow in shaping livestock populations. Additionally, the integration of machine learning with genomic data offers new perspectives on the functional roles of genes in adaptation and evolution. By exploring these genomic advancements, this review provides insights into genetic variation and evolutionary processes that could inform future approaches to improving livestock management and adaptation to environmental challenges, including climate change.</p>","PeriodicalId":18259,"journal":{"name":"Mammalian Genome","volume":" ","pages":"577-599"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142485687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A graph theoretical approach to experimental prioritization in genome-scale investigations. 基因组规模研究中确定实验优先次序的图论方法。
IF 2.7 4区 生物学
Mammalian Genome Pub Date : 2024-12-01 Epub Date: 2024-08-27 DOI: 10.1007/s00335-024-10066-z
Stephen K Grady, Kevin A Peterson, Stephen A Murray, Erich J Baker, Michael A Langston, Elissa J Chesler
{"title":"A graph theoretical approach to experimental prioritization in genome-scale investigations.","authors":"Stephen K Grady, Kevin A Peterson, Stephen A Murray, Erich J Baker, Michael A Langston, Elissa J Chesler","doi":"10.1007/s00335-024-10066-z","DOIUrl":"10.1007/s00335-024-10066-z","url":null,"abstract":"<p><p>The goal of systems biology is to gain a network level understanding of how gene interactions influence biological states, and ultimately inform upon human disease. Given the scale and scope of systems biology studies, resource constraints often limit researchers when validating genome-wide phenomena and potentially lead to an incomplete understanding of the underlying mechanisms. Further, prioritization strategies are often biased towards known entities (e.g. previously studied genes/proteins with commercially available reagents), and other technical issues that limit experimental breadth. Here, heterogeneous biological information is modeled as an association graph to which a high-performance minimum dominating set solver is applied to maximize coverage across the graph, and thus increase the breadth of experimentation. First, we tested our model on retrieval of existing gene functional annotations and demonstrated that minimum dominating set returns more diverse terms when compared to other computational methods. Next, we utilized our heterogenous network and minimum dominating set solver to assist in the process of identifying understudied genes to be interrogated by the International Mouse Phenotyping Consortium. Using an unbiased algorithmic strategy, poorly studied genes are prioritized from the remaining thousands of genes yet to be characterized. This method is tunable and extensible with the potential to incorporate additional user-defined prioritizing information. The minimum dominating set approach can be applied to any biological network in order to identify a tractable subset of features to test experimentally or to assist in prioritizing candidate genes associated with human disease.</p>","PeriodicalId":18259,"journal":{"name":"Mammalian Genome","volume":" ","pages":"724-733"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11522061/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142080808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comprehensive analysis of chromosomal breakpoints and candidate genes associated with male infertility: insights from cytogenetic studies and expression analyses. 全面分析与男性不育症相关的染色体断点和候选基因:细胞遗传学研究和表达分析的启示。
IF 2.7 4区 生物学
Mammalian Genome Pub Date : 2024-12-01 Epub Date: 2024-10-02 DOI: 10.1007/s00335-024-10074-z
Melika Hossein Garakani, Kianoush Kakavand, Marjan Sabbaghian, Azadeh Ghaheri, Najmeh Sadat Masoudi, Maryam Shahhoseini, Vahideh Hassanzadeh, Mohammadreza Zamanian, Anahita Mohseni Meybodi, Shabnam Zarei Moradi
{"title":"Comprehensive analysis of chromosomal breakpoints and candidate genes associated with male infertility: insights from cytogenetic studies and expression analyses.","authors":"Melika Hossein Garakani, Kianoush Kakavand, Marjan Sabbaghian, Azadeh Ghaheri, Najmeh Sadat Masoudi, Maryam Shahhoseini, Vahideh Hassanzadeh, Mohammadreza Zamanian, Anahita Mohseni Meybodi, Shabnam Zarei Moradi","doi":"10.1007/s00335-024-10074-z","DOIUrl":"10.1007/s00335-024-10074-z","url":null,"abstract":"<p><p>The study aimed to investigate prevalent chromosomal breakpoints identified in balanced structural chromosomal anomalies and to pinpoint potential candidate genes linked with male infertility. This was acchieved through a comprehensive approach combining RNA-seq and microarray data analysis, enabling precise identification of candidate genes. The Cytogenetics data from 2,500 infertile males referred to Royan Research Institute between 2009 and 2022 were analyzed, with 391 cases meeting the inclusion criteria of balanced chromosomal rearrangement. Of these, 193 cases exhibited normal variations and were excluded from the analysis. By examining the breakpoints, potential candidate genes were suggested. Among the remaining 198 cases, reciprocal translocations were the most frequent anomaly (129 cases), followed by Robertsonian translocations (43 cases), inversions (34 cases), and insertions (3 cases).Some patients had more than one chromosomal abnormality. Chromosomal anomalies were most frequently observed in chromosomes 13 (21.1%), 14 (20.1%), and 1 (16.3%) with 13q12, 14q12, and 1p36.3 being the most prevalent breakpoints, respectively. Chromosome 1 contributed the most to reciprocal translocations (20.2%) and inversions (17.6%), while chromosome 14 was the most involved in the Robertsonian translocations (82.2%). The findings suggested that breakpoints at 1p36.3 and 14q12 might be associated with pregestational infertility, whereas breakpoints at 13q12 could be linked to both gestational and pregestational infertility. Several candidate genes located on common breakpoints were proposed as potentially involved in male infertility. Bioinformatics analyses utilizing three databases were conducted to examine the expression patterns of 78 candidate genes implicated in various causes of infertility.‏ In azoospermic individuals, significant differential expression was observed in 19 genes: 15 were downregulated (TSSK2, SPINK2, TSSK4, CDY1, CFAP70, BPY2, BTG4, FKBP6, PPP2R1B, SPECC1L, CENPJ, ‏SKA3, FGF9, NODAL, CLOCK), while four genes were upregulated ‏(‏HSPB1, MIF, PRF1, ENTPD6). In the case of Asthenozoospermia, seven genes showed significant upregulation (PRF1, DDX21, KIT, SRD5A3, MTCH1, DDX50, NODAL). Though RNA-seq data for Teratozoospermia were unavailable, microarray data revealed differential expression insix genes: three downregulated (BUB1, KLK4, PIWIL2) and three upregulated (AURKC, NPM2, RANBP2). These findings enhance our understanding of the molecular basis of male infertility and could provide valuable insights for future diagnostic and therapeutic strategies.</p>","PeriodicalId":18259,"journal":{"name":"Mammalian Genome","volume":" ","pages":"764-783"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142365781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Online Mendelian Inheritance in Animals (OMIA): a genetic resource for vertebrate animals. 在线动物孟德尔遗传(OMIA):脊椎动物遗传资源。
IF 2.7 4区 生物学
Mammalian Genome Pub Date : 2024-12-01 Epub Date: 2024-08-14 DOI: 10.1007/s00335-024-10059-y
Imke Tammen, Marius Mather, Tosso Leeb, Frank W Nicholas
{"title":"Online Mendelian Inheritance in Animals (OMIA): a genetic resource for vertebrate animals.","authors":"Imke Tammen, Marius Mather, Tosso Leeb, Frank W Nicholas","doi":"10.1007/s00335-024-10059-y","DOIUrl":"10.1007/s00335-024-10059-y","url":null,"abstract":"<p><p>Online Mendelian Inheritance in Animals (OMIA) is a freely available curated knowledgebase that contains information and facilitates research on inherited traits and diseases in animals. For the past 29 years, OMIA has been used by animal geneticists, breeders, and veterinarians worldwide as a definitive source of information. Recent increases in curation capacity and funding for software engineering support have resulted in software upgrades and commencement of several initiatives, which include the enhancement of variant information and links to human data resources, and the introduction of ontology-based breed information and categories. We provide an overview of current information and recent enhancements to OMIA and discuss how we are expanding the integration of OMIA into other resources and databases via the use of ontologies and the adaptation of tools used in human genetics.</p>","PeriodicalId":18259,"journal":{"name":"Mammalian Genome","volume":" ","pages":"556-564"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11522177/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141982751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comprehensive analysis of somatic mutations and structural variations in domestic pig. 家猪体细胞突变和结构变异的综合分析。
IF 2.7 4区 生物学
Mammalian Genome Pub Date : 2024-12-01 Epub Date: 2024-08-23 DOI: 10.1007/s00335-024-10058-z
Seong Gyu Kwon, Geon Hue Bae, Joo Hee Hong, Jeong-Woo Choi, June Hyug Choi, Nam Seop Lim, CheolMin Jeon, Nanda Maya Mali, Mee Sook Jun, JaeEun Shin, JinSoo Kim, Eun-Seok Cho, Man-Hoon Han, Ji Won Oh
{"title":"Comprehensive analysis of somatic mutations and structural variations in domestic pig.","authors":"Seong Gyu Kwon, Geon Hue Bae, Joo Hee Hong, Jeong-Woo Choi, June Hyug Choi, Nam Seop Lim, CheolMin Jeon, Nanda Maya Mali, Mee Sook Jun, JaeEun Shin, JinSoo Kim, Eun-Seok Cho, Man-Hoon Han, Ji Won Oh","doi":"10.1007/s00335-024-10058-z","DOIUrl":"10.1007/s00335-024-10058-z","url":null,"abstract":"<p><p>Understanding somatic mutations and structural variations in domestic pigs (Sus scrofa domestica) is critical due to their increasing importance as model organisms in biomedical research. In this study, we conducted a comprehensive analysis through whole-genome sequencing of skin, organs, and blood samples. By examining two pig pedigrees, we investigated the inheritance and sharedness of structural variants among fathers, mothers, and offsprings. Utilizing single-cell clonal expansion techniques, we observed significant variations in the number of somatic mutations across different tissues. An in-house developed pipeline enabled precise filtering and analysis of these mutations, resulting in the construction of individual phylogenetic trees for two pigs. These trees explored the developmental relationships between different tissues, revealing insights into clonal expansions from various anatomical locations. This study enhances the understanding of pig genomes, affirming their increasing value in clinical and genomic research, and provides a foundation for future studies in other animals, paralleling previous studies in mice and humans. This approach not only deepens our understanding of mammalian genomic variations but also strengthens the role of pigs as a crucial model in human health and disease research.</p>","PeriodicalId":18259,"journal":{"name":"Mammalian Genome","volume":" ","pages":"645-656"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142036270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The mouse metabolic phenotyping center (MMPC) live consortium: an NIH resource for in vivo characterization of mouse models of diabetes and obesity. 小鼠代谢表型中心(MMPC)活体联盟:美国国立卫生研究院用于糖尿病和肥胖症小鼠模型活体特征描述的资源。
IF 2.7 4区 生物学
Mammalian Genome Pub Date : 2024-12-01 Epub Date: 2024-08-27 DOI: 10.1007/s00335-024-10067-y
Maren Laughlin, Richard McIndoe, Sean H Adams, Renee Araiza, Julio E Ayala, Lucy Kennedy, Louise Lanoue, Louise Lantier, James Macy, Eann Malabanan, Owen P McGuinness, Rachel Perry, Daniel Port, Nathan Qi, Carol F Elias, Gerald I Shulman, David H Wasserman, K C Kent Lloyd
{"title":"The mouse metabolic phenotyping center (MMPC) live consortium: an NIH resource for in vivo characterization of mouse models of diabetes and obesity.","authors":"Maren Laughlin, Richard McIndoe, Sean H Adams, Renee Araiza, Julio E Ayala, Lucy Kennedy, Louise Lanoue, Louise Lantier, James Macy, Eann Malabanan, Owen P McGuinness, Rachel Perry, Daniel Port, Nathan Qi, Carol F Elias, Gerald I Shulman, David H Wasserman, K C Kent Lloyd","doi":"10.1007/s00335-024-10067-y","DOIUrl":"10.1007/s00335-024-10067-y","url":null,"abstract":"<p><p>The Mouse Metabolic Phenotyping Center (MMPC)Live Program was established in 2023 by the National Institute for Diabetes, Digestive and Kidney Diseases (NIDDK) at the National Institutes of Health (NIH) to advance biomedical research by providing the scientific community with standardized, high quality phenotyping services for mouse models of diabetes and obesity. Emerging as the next iteration of the MMPC Program which served the biomedical research community for 20 years (2001-2021), MMPCLive is designed as an outwardly-facing consortium of service cores that collaborate to provide reduced-cost consultation and metabolic, physiologic, and behavioral phenotyping tests on live mice for U.S. biomedical researchers. Four MMPCLive Centers located at universities around the country perform complex and often unique procedures in vivo on a fee for service basis, typically on mice shipped from the client or directly from a repository or vendor. Current areas of expertise include energy balance and body composition, insulin action and secretion, whole body carbohydrate and lipid metabolism, cardiovascular and renal function, food intake and behavior, microbiome and xenometabolism, and metabolic pathway kinetics. Additionally, an opportunity arose to reduce barriers to access and expand the diversity of the biomedical research workforce by establishing the VIBRANT Program. Directed at researchers historically underrepresented in the biomedical sciences, VIBRANT-eligible investigators have access to testing services, travel and career development awards, expert advice and experimental design consultation, and short internships to learn test technologies. Data derived from experiments run by the Centers belongs to the researchers submitting mice for testing which can be made publicly available and accessible from the MMPCLive database following publication. In addition to services, MMPCLive staff provide expertise and advice to researchers, develop and refine test protocols, engage in outreach activities, publish scientific and technical papers, and conduct educational workshops and training sessions to aid researchers in unraveling the heterogeneity of diabetes and obesity.</p>","PeriodicalId":18259,"journal":{"name":"Mammalian Genome","volume":" ","pages":"485-496"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11522164/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142080810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The mutant mouse resource and research center (MMRRC) consortium: the US-based public mouse repository system. 突变小鼠资源和研究中心(MMRRC)联盟:基于美国的公共小鼠资源库系统。
IF 2.7 4区 生物学
Mammalian Genome Pub Date : 2024-12-01 Epub Date: 2024-09-20 DOI: 10.1007/s00335-024-10070-3
Yuksel Agca, James Amos-Landgraf, Renee Araiza, Jennifer Brennan, Charisse Carlson, Dominic Ciavatta, Dave Clary, Craig Franklin, Ian Korf, Cathleen Lutz, Terry Magnuson, Fernando Pardo-Manuel de Villena, Oleg Mirochnitchenko, Samit Patel, Dan Port, Laura Reinholdt, K C Kent Lloyd
{"title":"The mutant mouse resource and research center (MMRRC) consortium: the US-based public mouse repository system.","authors":"Yuksel Agca, James Amos-Landgraf, Renee Araiza, Jennifer Brennan, Charisse Carlson, Dominic Ciavatta, Dave Clary, Craig Franklin, Ian Korf, Cathleen Lutz, Terry Magnuson, Fernando Pardo-Manuel de Villena, Oleg Mirochnitchenko, Samit Patel, Dan Port, Laura Reinholdt, K C Kent Lloyd","doi":"10.1007/s00335-024-10070-3","DOIUrl":"10.1007/s00335-024-10070-3","url":null,"abstract":"<p><p>Now in its 25th year, the Mutant Mouse Resource and Research Center (MMRRC) consortium continues to serve the United States and international biomedical scientific community as a public repository and distribution archive of laboratory mouse models of human disease for research. Supported by the National Institutes of Health (NIH), the MMRRC consists of 4 regionally distributed and dedicated vivaria, offices, and specialized laboratory facilities and an Informatics Coordination and Service Center (ICSC). The overarching purpose of the MMRRC is to facilitate groundbreaking biomedical research by offering an extensive repertoire of mutant mice that are essential for advancing the understanding of human physiology and disease. The function of the MMRRC is to identify, acquire, evaluate, characterize, cryopreserve, and distribute mutant mouse strains to qualified biomedical investigators around the nation and the globe. Mouse strains accepted from the research community are held to the highest scientific standards to optimize reproducibility and enhance scientific rigor and transparency. All submitted strains are thoroughly reviewed, documented, and validated using extensive scientific quality control measures. In addition, the MMRRC conducts resource-related research on cryopreservation, mouse genetics, environmental conditions, and other topics that enhance operations of the MMRRC. Today, the MMRRC maintains an archive of mice, cryopreserved embryos and sperm, embryonic stem (ES) cell lines, and murine hybridomas for nearly 65,000 alleles. Since its inception, the MMRRC has fulfilled more than 20,000 orders from 13,651 scientists at 8441 institutions worldwide. The MMRRC also provides numerous services to assist researchers, including scientific consultation, technical assistance, genetic assays, microbiome analysis, analytical phenotyping, pathology, cryorecovery, husbandry, breeding and colony management, infectious disease surveillance, and disease modeling. The ICSC coordinates MMRRC operations, interacts with researchers, and manages the website (mmrrc.org) and online catalogue. Researchers benefit from an expansive list of well-defined mouse models of disease that meet the highest scientific standards while submitting investigators benefit by having their mouse strains cryopreserved, protected, and distributed in compliance with NIH policies.</p>","PeriodicalId":18259,"journal":{"name":"Mammalian Genome","volume":" ","pages":"524-536"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11522152/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142290471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In search of epigenetic hallmarks of different tissues: an integrative omics study of horse liver, lung, and heart. 寻找不同组织的表观遗传特征:对马肝、肺和心脏的综合全息研究。
IF 2.7 4区 生物学
Mammalian Genome Pub Date : 2024-12-01 Epub Date: 2024-08-14 DOI: 10.1007/s00335-024-10057-0
Ewelina Semik-Gurgul, Klaudia Pawlina-Tyszko, Artur Gurgul, Tomasz Szmatoła, Justyna Rybińska, Tomasz Ząbek
{"title":"In search of epigenetic hallmarks of different tissues: an integrative omics study of horse liver, lung, and heart.","authors":"Ewelina Semik-Gurgul, Klaudia Pawlina-Tyszko, Artur Gurgul, Tomasz Szmatoła, Justyna Rybińska, Tomasz Ząbek","doi":"10.1007/s00335-024-10057-0","DOIUrl":"10.1007/s00335-024-10057-0","url":null,"abstract":"<p><p>DNA methylation and microRNA (miRNA) expression are epigenetic mechanisms essential for regulating tissue-specific gene expression and metabolic processes. However, high-resolution transcriptome, methylome, or miRNAome data is only available for a few model organisms and selected tissues. Up to date, only a few studies have reported on gene expression, DNA methylation, or miRNA expression in adult equine tissues at the genome-wide level. In the present study, we used RNA-Seq, miRNA-seq, and reduced representation bisulfite sequencing (RRBS) data from the heart, lung, and liver tissues of healthy cold-blooded horses to identify differentially expressed genes (DEGs), differentially expressed miRNA (DE miRNA) and differentially methylated sites (DMSs) between three types of horse tissues. Additionally, based on integrative omics analysis, we described the observed interactions of epigenetic mechanisms with tissue-specific gene expression alterations. The obtained data allowed identification from 4067 to 6143 DMSs, 9733 to 11,263 mRNAs, and 155 to 185 microRNAs, differentially expressed between various tissues. We pointed out specific genes whose expression level displayed a negative correlation with the level of CpG methylation and miRNA expression and revealed biological processes that they enrich. Furthermore, we confirmed and validated the accuracy of the Next-Generation Sequencing (NGS) results with bisulfite sequencing PCR (BSP) and quantitative PCR (qPCR). This comprehensive analysis forms a strong foundation for exploring the epigenetic mechanisms involved in tissue differentiation, especially the growth and development of the equine heart, lungs, and liver.</p>","PeriodicalId":18259,"journal":{"name":"Mammalian Genome","volume":" ","pages":"600-620"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11522055/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141982750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MicroRNA expression profiling of ovine epithelial cells stimulated with the Staphylococcus aureus in vitro. 用金黄色葡萄球菌刺激体外绵羊上皮细胞的 MicroRNA 表达谱分析。
IF 2.7 4区 生物学
Mammalian Genome Pub Date : 2024-12-01 Epub Date: 2024-08-31 DOI: 10.1007/s00335-024-10062-3
Ghulam Asghar Sajid, Muhammad Jasim Uddin, Saif Adil Abbood Al-Janabi, Abdiaziz Nur Ibrahim, Mehmet Ulas Cinar
{"title":"MicroRNA expression profiling of ovine epithelial cells stimulated with the Staphylococcus aureus in vitro.","authors":"Ghulam Asghar Sajid, Muhammad Jasim Uddin, Saif Adil Abbood Al-Janabi, Abdiaziz Nur Ibrahim, Mehmet Ulas Cinar","doi":"10.1007/s00335-024-10062-3","DOIUrl":"10.1007/s00335-024-10062-3","url":null,"abstract":"<p><p>MicroRNAs (miRNAs) act as key gene expression regulators, influencing intracellular biological and pathological processes. They are of significant interest in animal genetics as potential biomarkers for animal selection and health. This study aimed to unravel the complex miRNA signature involved in mastitis in in vitro cell culture. For this purpose, we constructed a control and treatment model in ovarian mammary epithelial cells to analyze miRNA responses upon Staphylococcus aureus (S. aureus) stimulation. The high-throughput Illumina Small RNA protocol was employed, generating an average of 7.75 million single-end reads per sample, totaling 46.54 million reads. Standard bioinformatics analysis, including cleaning, filtering, miRNA quantification, and differential expression was performed using the miRbase database as a reference for ovine miRNAs. The results indicated differential expression of 63 miRNAs, including 33 up-regulated and 30 down-regulated compared to the control group. Notably, miR-10a, miR-10b, miR-21, and miR-99a displayed a significant differential expression (p ≤ 0.05) associated to signal transduction, transcriptional pathways, diseases of signal transduction by growth factor receptors and second messengers, MAPK signaling pathway, NF-κB pathway, TNFα, Toll Like Receptor 4 (TLR4) cascade, and breast cancer. This study contributes expanding miRNA databases, especially for sheep miRNAs, and identifies potential miRNA candidates for further study in biomarker identification for mastitis resistance and diagnosis.</p>","PeriodicalId":18259,"journal":{"name":"Mammalian Genome","volume":" ","pages":"673-682"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142108946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信