Mammalian GenomePub Date : 2024-03-01Epub Date: 2023-11-17DOI: 10.1007/s00335-023-10025-0
Hanifa J Abu-Toamih-Atamni, Iqbal M Lone, Ilona Binenbaum, Richard Mott, Eleftherios Pilalis, Aristotelis Chatziioannou, Fuad A Iraqi
{"title":"Mapping novel QTL and fine mapping of previously identified QTL associated with glucose tolerance using the collaborative cross mice.","authors":"Hanifa J Abu-Toamih-Atamni, Iqbal M Lone, Ilona Binenbaum, Richard Mott, Eleftherios Pilalis, Aristotelis Chatziioannou, Fuad A Iraqi","doi":"10.1007/s00335-023-10025-0","DOIUrl":"10.1007/s00335-023-10025-0","url":null,"abstract":"<p><p>A chronic metabolic illness, type 2 diabetes (T2D) is a polygenic and multifactorial complicated disease. With an estimated 463 million persons aged 20 to 79 having diabetes, the number is expected to rise to 700 million by 2045, creating a significant worldwide health burden. Polygenic variants of diabetes are influenced by environmental variables. T2D is regarded as a silent illness that can advance for years before being diagnosed. Finding genetic markers for T2D and metabolic syndrome in groups with similar environmental exposure is therefore essential to understanding the mechanism of such complex characteristic illnesses. So herein, we demonstrated the exclusive use of the collaborative cross (CC) mouse reference population to identify novel quantitative trait loci (QTL) and, subsequently, suggested genes associated with host glucose tolerance in response to a high-fat diet. In this study, we used 539 mice from 60 different CC lines. The diabetogenic effect in response to high-fat dietary challenge was measured by the three-hour intraperitoneal glucose tolerance test (IPGTT) test after 12 weeks of dietary challenge. Data analysis was performed using a statistical software package IBM SPSS Statistic 23. Afterward, blood glucose concentration at the specific and between different time points during the IPGTT assay and the total area under the curve (AUC0-180) of the glucose clearance was computed and utilized as a marker for the presence and severity of diabetes. The observed AUC0-180 averages for males and females were 51,267.5 and 36,537.5 mg/dL, respectively, representing a 1.4-fold difference in favor of females with lower AUC0-180 indicating adequate glucose clearance. The AUC0-180 mean differences between the sexes within each specific CC line varied widely within the CC population. A total of 46 QTL associated with the different studied phenotypes, designated as T2DSL and its number, for Type 2 Diabetes Specific Locus and its number, were identified during our study, among which 19 QTL were not previously mapped. The genomic interval of the remaining 27 QTL previously reported, were fine mapped in our study. The genomic positions of 40 of the mapped QTL overlapped (clustered) on 11 different peaks or close genomic positions, while the remaining 6 QTL were unique. Further, our study showed a complex pattern of haplotype effects of the founders, with the wild-derived strains (mainly PWK) playing a significant role in the increase of AUC values.</p>","PeriodicalId":18259,"journal":{"name":"Mammalian Genome","volume":" ","pages":"31-55"},"PeriodicalIF":2.5,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136398011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mammalian GenomePub Date : 2024-03-01Epub Date: 2023-10-26DOI: 10.1007/s00335-023-10022-3
Kristina Eisinger, Philipp Girke, Christa Buechler, Sabrina Krautbauer
{"title":"Adipose tissue depot specific expression and regulation of fibrosis-related genes and proteins in experimental obesity.","authors":"Kristina Eisinger, Philipp Girke, Christa Buechler, Sabrina Krautbauer","doi":"10.1007/s00335-023-10022-3","DOIUrl":"10.1007/s00335-023-10022-3","url":null,"abstract":"<p><p>Transforming growth factor beta (Tgfb) is a well-studied pro-fibrotic cytokine, which upregulates cellular communication network factor 2 (Ccn2), collagen, and actin alpha 2, smooth muscle (Acta2) expression. Obesity induces adipose tissue fibrosis, which contributes to metabolic diseases. This work aimed to analyze the expression of Tgfb, Ccn2, collagen1a1 (Col1a1), Acta2 and BMP and activin membrane-bound inhibitor (Bambi), which is a negative regulator of Tgfb signaling, in different adipose tissue depots of mice fed a standard chow, mice fed a high fat diet (HFD) and ob/ob mice. Principally, these genes were low expressed in brown adipose tissues and this difference was less evident for the ob/ob mice. Ccn2 and Bambi protein as well as mRNA expression, and collagen1a1 mRNA were not induced in the adipose tissues upon HFD feeding whereas Tgfb and Acta2 mRNA increased in the white fat depots. Immunoblot analysis showed that Acta2 protein was higher in subcutaneous and perirenal fat of these mice. In the ob/ob mice, Ccn2 mRNA and Ccn2 protein were upregulated in the fat depots. Here, Tgfb, Acta2 and Col1a1 mRNA levels and serum Tgfb protein were increased. Acta2 protein was, however, not higher in subcutaneous and perirenal fat of these mice. Col6a1 mRNA was shown before to be higher in obese fat tissues. Current analysis proved the Col6a1 protein was induced in subcutaneous fat of HFD fed mice. Notably, Col6a1 was reduced in perirenal fat of ob/ob mice in comparison to the respective controls. 3T3-L1 cells express Ccn2 and Bambi protein, whose levels were not changed by fatty acids, leptin, lipopolysaccharide, tumor necrosis factor and interleukin-6. All of these factors led to higher Tgfb in 3T3-L1 adipocyte media but did not increase its mRNA levels. Free fatty acids induced necrosis whereas apoptosis did not occur in any of the in vitro incubations excluding cell death as a main reason for higher Tgfb in cell media. In summary, Tgfb mRNA is consistently induced in white fat tissues in obesity but this is not paralleled by a clear increase of its target genes. Moreover, discrepancies between mRNA and protein expression of Acta2 were observed. Adipocytes seemingly do not contribute to higher Tgfb mRNA levels in obesity. These cells release more Tgfb protein when challenged with obesity-related metabolites connecting metabolic dysfunction and fibrosis.</p>","PeriodicalId":18259,"journal":{"name":"Mammalian Genome","volume":" ","pages":"13-30"},"PeriodicalIF":2.5,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10884164/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"54229893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mammalian GenomePub Date : 2024-03-01Epub Date: 2023-10-21DOI: 10.1007/s00335-023-10020-5
Alfredo Santovito, Martina Saracco, Manuel Scarfo', Alessandro Nota, Sandro Bertolino
{"title":"Purebred dogs show higher levels of genomic damage compared to mixed breed dogs.","authors":"Alfredo Santovito, Martina Saracco, Manuel Scarfo', Alessandro Nota, Sandro Bertolino","doi":"10.1007/s00335-023-10020-5","DOIUrl":"10.1007/s00335-023-10020-5","url":null,"abstract":"<p><p>Inbreeding is a common phenomenon in small, fragmented or isolated populations, typical conditions of many threatened species. In the present paper, we used a new non-invasive approach based on the buccal micronucleus assay to evaluate the possible relationships between inbreeding and genomic damage using the dog as model species. In particular, we assessed the frequencies of micronuclei and other nuclear aberrations in a group of purebred dogs (n = 77), comparing the obtained data with those from a control group represented by mixed breed dogs (n = 75). We found a significant increase of micronuclei, nuclear buds and total nuclear aberrations frequencies in purebred dogs compared to mixed-bred dogs. The absence of significant differences in the frequency of micronuclei and other nuclear aberrations amongst different breeds reinforces the hypothesis that the observed increased genomic damage amongst purebred dogs may not be due to a different genomic instability typical of a particular breed, but to inbreeding itself. This hypothesis is further confirmed by the fact that other endogen confounding factors, such as sex, age and weight, do not contribute significantly to the increase of genomic damage observed amongst purebred dogs. In conclusion, results presented in this study showed that, in purebred dogs, inbreeding may increase the levels of genomic damage. Considering that genomic damage is associated with increased physiological problems affecting animal health, the results we obtained may represent a stimulus to discourage the use of intensive inbreeding practices in captive populations and to reduce the fragmentation of wild populations.</p>","PeriodicalId":18259,"journal":{"name":"Mammalian Genome","volume":" ","pages":"90-98"},"PeriodicalIF":2.5,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10884103/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49679299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comprehensive overview of disease models for Wolfram syndrome: toward effective treatments.","authors":"Shuntaro Morikawa, Katsuya Tanabe, Naoya Kaneko, Nozomi Hishimura, Akie Nakamura","doi":"10.1007/s00335-023-10028-x","DOIUrl":"10.1007/s00335-023-10028-x","url":null,"abstract":"<p><p>Wolfram syndrome (OMIM 222300) is a rare autosomal recessive disease with a devastating array of symptoms, including diabetes mellitus, optic nerve atrophy, diabetes insipidus, hearing loss, and neurological dysfunction. The discovery of the causative gene, WFS1, has propelled research on this disease. However, a comprehensive understanding of the function of WFS1 remains unknown, making the development of effective treatment a pressing challenge. To bridge these knowledge gaps, disease models for Wolfram syndrome are indispensable, and understanding the characteristics of each model is critical. This review will provide a summary of the current knowledge regarding WFS1 function and offer a comprehensive overview of established disease models for Wolfram syndrome, covering animal models such as mice, rats, flies, and zebrafish, along with induced pluripotent stem cell (iPSC)-derived human cellular models. These models replicate key aspects of Wolfram syndrome, contributing to a deeper understanding of its pathogenesis and providing a platform for discovering potential therapeutic approaches.</p>","PeriodicalId":18259,"journal":{"name":"Mammalian Genome","volume":" ","pages":"1-12"},"PeriodicalIF":2.5,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139729975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mammalian GenomePub Date : 2023-12-01Epub Date: 2023-08-29DOI: 10.1007/s00335-023-10013-4
Megan L Ratz-Mitchem, Greg Leary, Andrea Grindeland, Derek Silvius, Joseph Guter, Michael P Kavanaugh, Teresa M Gunn
{"title":"Generation and characterization of a knock-in mouse model for spastic tetraplegia, thin corpus callosum, and progressive microcephaly (SPATCCM).","authors":"Megan L Ratz-Mitchem, Greg Leary, Andrea Grindeland, Derek Silvius, Joseph Guter, Michael P Kavanaugh, Teresa M Gunn","doi":"10.1007/s00335-023-10013-4","DOIUrl":"10.1007/s00335-023-10013-4","url":null,"abstract":"<p><p>Solute carrier family 1 member 4 (SLC1A4), also referred to as Alanine/Serine/Cysteine/Threonine-preferring Transporter 1 (ASCT1), is a sodium-dependent neutral amino acid transporter. It is expressed in many tissues, including the brain, where it is expressed primarily on astrocytes and plays key roles in neuronal differentiation and development, maintaining neurotransmitter homeostasis, and N-methyl-D-aspartate neurotransmission, through regulation of L- and D-serine. Mutations in SLC1A4 are associated with the rare autosomal recessive neurodevelopmental disorder spastic tetraplegia, thin corpus callosum, and progressive microcephaly (SPATCCM, OMIM 616657). Psychomotor development and speech are significantly impaired in these patients, and many develop seizures. We generated and characterized a knock-in mouse model for the most common mutant allele, which results in a single amino acid change (p.Glu256Lys, or E256K). Homozygous mutants had increased D-serine uptake in the brain, microcephaly, and thin corpus callosum and cortex layer 1. While p.E256K homozygotes showed some significant differences in exploratory behavior relative to wildtype mice, their performance in assays for motor coordination, endurance, learning, and memory was normal, and they showed no significant differences in long-term potentiation. Taken together, these results indicate that the impact of the p.E256K mutation on cognition and motor function is minimal in mice, but other aspects of SLC1A4 function in the brain are conserved. Mice homozygous for p.E256K may be a good model for understanding the developmental basis of the corpus callosum and microcephaly phenotypes observed in SPATCCM patients and assessing whether they are rescued by serine supplementation.</p>","PeriodicalId":18259,"journal":{"name":"Mammalian Genome","volume":" ","pages":"572-585"},"PeriodicalIF":2.7,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10680402/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10200524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A nonsense mutation in mouse Adamtsl2 causes uterine hypoplasia and an irregular estrous cycle.","authors":"Yuka Iwanaga, Kaori Tsuji, Ayaka Nishimura, Kouji Tateishi, Misa Kakiuchi, Takehito Tsuji","doi":"10.1007/s00335-023-10016-1","DOIUrl":"10.1007/s00335-023-10016-1","url":null,"abstract":"<p><p>The spontaneous mutation stubby (stb) in mice causes chondrodysplasia and male infertility due to impotence through autosomal recessive inheritance. In this study, we conducted linkage analysis to localize the stb locus within a 1.6 Mb region on mouse chromosome 2 and identified a nonsense mutation in Adamtsl2 of stb/stb mice. Histological analysis revealed disturbed endochondral ossification with a reduced hypertrophic chondrocyte layer and stiff skin with a thickened dermal layer. These phenotypes are similar to those observed in humans and mice with ADAMTSL2/Adamtsl2 mutations. Moreover, stb/stb female mice exhibited severe uterine hypoplasia at 5 weeks of age and irregular estrous cycles at 10 weeks of age. In normal mice, Adamtsl2 was more highly expressed in the ovary and pituitary gland than in the uterus, and this expression was decreased in stb/stb mice. These findings suggest that Adamtsl2 may function in these organs rather than in the uterus. Thus, we analyzed Gh expression in the pituitary gland and plasma estradiol and IGF1 levels, which are required for the development of the female reproductive tract. There was no significant difference in Gh expression and estradiol levels, whereas IGF1 levels in stb/stb mice were significantly reduced to 54-59% of those in +/+ mice. We conclude that Adamtsl2 is required for the development of the uterus and regulation of the estrous cycle in female mice, and decreased IGF1 may be related to these abnormalities.</p>","PeriodicalId":18259,"journal":{"name":"Mammalian Genome","volume":" ","pages":"559-571"},"PeriodicalIF":2.5,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10627917/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10484777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mammalian GenomePub Date : 2023-12-01Epub Date: 2023-08-15DOI: 10.1007/s00335-023-10014-3
Molly A Bogue, Robyn L Ball, David O Walton, Matthew H Dunn, Georgi Kolishovski, Alexander Berger, Anna Lamoureux, Stephen C Grubb, Matthew Gerring, Matthew Kim, Hongping Liang, Jake Emerson, Timothy Stearns, Hao He, Gaurab Mukherjee, John Bluis, Sara Davis, Sejal Desai, Beth Sundberg, Beena Kadakkuzha, Govindarajan Kunde-Ramamoorthy, Vivek M Philip, Elissa J Chesler
{"title":"Mouse phenome database: curated data repository with interactive multi-population and multi-trait analyses.","authors":"Molly A Bogue, Robyn L Ball, David O Walton, Matthew H Dunn, Georgi Kolishovski, Alexander Berger, Anna Lamoureux, Stephen C Grubb, Matthew Gerring, Matthew Kim, Hongping Liang, Jake Emerson, Timothy Stearns, Hao He, Gaurab Mukherjee, John Bluis, Sara Davis, Sejal Desai, Beth Sundberg, Beena Kadakkuzha, Govindarajan Kunde-Ramamoorthy, Vivek M Philip, Elissa J Chesler","doi":"10.1007/s00335-023-10014-3","DOIUrl":"10.1007/s00335-023-10014-3","url":null,"abstract":"<p><p>The Mouse Phenome Database continues to serve as a curated repository and analysis suite for measured attributes of members of diverse mouse populations. The repository includes annotation to community standard ontologies and guidelines, a database of allelic states for 657 mouse strains, a collection of protocols, and analysis tools for flexible, interactive, user directed analyses that increasingly integrates data across traits and populations. The database has grown from its initial focus on a standard set of inbred strains to include heterogeneous mouse populations such as the Diversity Outbred and mapping crosses and well as Collaborative Cross, Hybrid Mouse Diversity Panel, and recombinant inbred strains. Most recently the system has expanded to include data from the International Mouse Phenotyping Consortium. Collectively these data are accessible by API and provided with an interactive tool suite that enables users' persistent selection, storage, and operation on collections of measures. The tool suite allows basic analyses, advanced functions with dynamic visualization including multi-population meta-analysis, multivariate outlier detection, trait pattern matching, correlation analyses and other functions. The data resources and analysis suite provide users a flexible environment in which to explore the basis of phenotypic variation in health and disease across the lifespan.</p>","PeriodicalId":18259,"journal":{"name":"Mammalian Genome","volume":" ","pages":"509-519"},"PeriodicalIF":2.5,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10627943/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10003102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mammalian GenomePub Date : 2023-12-01Epub Date: 2023-09-26DOI: 10.1007/s00335-023-10018-z
Shernae A Woolley, Mazdak Salavati, Emily L Clark
{"title":"Recent advances in the genomic resources for sheep.","authors":"Shernae A Woolley, Mazdak Salavati, Emily L Clark","doi":"10.1007/s00335-023-10018-z","DOIUrl":"10.1007/s00335-023-10018-z","url":null,"abstract":"<p><p>Sheep (Ovis aries) provide a vital source of protein and fibre to human populations. In coming decades, as the pressures associated with rapidly changing climates increase, breeding sheep sustainably as well as producing enough protein to feed a growing human population will pose a considerable challenge for sheep production across the globe. High quality reference genomes and other genomic resources can help to meet these challenges by: (1) informing breeding programmes by adding a priori information about the genome, (2) providing tools such as pangenomes for characterising and conserving global genetic diversity, and (3) improving our understanding of fundamental biology using the power of genomic information to link cell, tissue and whole animal scale knowledge. In this review we describe recent advances in the genomic resources available for sheep, discuss how these might help to meet future challenges for sheep production, and provide some insight into what the future might hold.</p>","PeriodicalId":18259,"journal":{"name":"Mammalian Genome","volume":" ","pages":"545-558"},"PeriodicalIF":2.7,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10627984/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41130018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Elucidation of genetic determinants of dyslipidaemia using a global screening array for the early detection of coronary artery disease.","authors":"Ananthaneni Radhika, Sandeepta Burgula, Chandan Badapanda, Tajamul Hussain, Shaik Mohammad Naushad","doi":"10.1007/s00335-023-10017-0","DOIUrl":"10.1007/s00335-023-10017-0","url":null,"abstract":"<p><p>Dyslipidemia is a major risk factor for the development of coronary artery disease (CAD). Understanding the genetic determinants of dyslipidemia can provide valuable information on the pathogenesis of CAD and aid in the development of early detection strategies. In this study, we used a Global Screening Array (GSA) to elucidate the genetic factors associated with dyslipidemia and their potential role in the prediction of CAD. We conducted a GSA-based association study in 265 subjects to identify the genetic loci associated with dyslipidemia traits using Multiple Linear Regression (MLR) and Logistic Regression (LR), Classification and Regression Tree (CART), and Manhattan plots. We identified an association between dyslipidemia and variants identified in genes such as JCAD, GLIS3, CD38, FN1, CELSR2, MTNR1B, GIPR, DYM, APOB, APOE, ADCY5. The MLR models explained 62%, 71%, and 81% of the variability in HDL, LDL, and triglycerides, respectively. The Area Under the Curve (AUC) values in the LR models of HDL, LDL, and triglycerides were 1.00, 0.94, and 0.95, respectively. CART models identified novel gene-gene interactions influencing the risk for dyslipidemia. To conclude, we have identified the association of 12 SNVs with dyslipidemia and demonstrated their clinical utility in four different models such as MLR, LR, CART, and Manhattan plots. The identified genetic variants and associated pathways shed light on the underlying biology of dyslipidemia and offer potential avenues for precision medicine strategies in the management of CAD.</p>","PeriodicalId":18259,"journal":{"name":"Mammalian Genome","volume":" ","pages":"632-643"},"PeriodicalIF":2.5,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10508800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mammalian GenomePub Date : 2023-12-01Epub Date: 2023-10-07DOI: 10.1007/s00335-023-10019-y
Fakhar Un Nisa, Haiba Kaul, Muhammad Asif, Imran Amin, Raphael Mrode, Shahid Mansoor, Zahid Mukhtar
{"title":"Genetic insights into crossbred dairy cattle of Pakistan: exploring allele frequency, linkage disequilibrium, and effective population size at a genome-wide scale.","authors":"Fakhar Un Nisa, Haiba Kaul, Muhammad Asif, Imran Amin, Raphael Mrode, Shahid Mansoor, Zahid Mukhtar","doi":"10.1007/s00335-023-10019-y","DOIUrl":"10.1007/s00335-023-10019-y","url":null,"abstract":"<p><p>Linkage disequilibrium (LD) affects genomic studies accuracy. High-density genotyping platforms identify SNPs across animal genomes, increasing LD evaluation resolution for accurate analysis. This study aimed to evaluate the decay and magnitude of LD in a cohort of 81 crossbred dairy cattle using the GGP_HDv3_C Bead Chip. After quality control, 116,710 Single Nucleotide Polymorphisms (SNPs) across 2520.241 Mb of autosomes were retained. LD extent was assessed between autosomal SNPs within a 10 Mb range using the r<sup>2</sup> statistics. LD value declined as inter-marker distance increased. The average r<sup>2</sup> value was 0.24 for SNP pairs < 10 kb apart, decreasing to 0.13 for 50-100 kb distances. Minor allele frequency (MAF) and sample size significantly impact LD. Lower MAF thresholds result in smaller r<sup>2</sup> values, while higher thresholds show increased r<sup>2</sup> values. Additionally, smaller sample sizes exhibit higher average r<sup>2</sup> values, especially for larger physical distance intervals (> 50 kb) between SNP pairs. Effective population size and inbreeding coefficient were 150 and 0.028 for the present generation, indicating a decrease in genetic diversity over time. These findings imply that the utilization of high-density SNP panels and customized/breed-specific SNP panels represent a highly favorable approach for conducting genome-wide association studies (GWAS) and implementing genomic selection (GS) in the Bos indicus cattle breeds, whose genomes are still largely unexplored. Furthermore, it is imperative to devise a meticulous breeding strategy tailored to each herd, aiming to enhance desired traits while simultaneously preserving genetic diversity.</p>","PeriodicalId":18259,"journal":{"name":"Mammalian Genome","volume":" ","pages":"602-614"},"PeriodicalIF":2.5,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41137787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}