Zhixiong Chen, Ruiquan Ge, Changmiao Wang, Ahmed Elazab, Xianjun Fu, Wenwen Min, Feiwei Qin, Gangyong Jia, Xiaopeng Fan
{"title":"通过特征融合和遗传算法识别精神分裂症的重要基因特征。","authors":"Zhixiong Chen, Ruiquan Ge, Changmiao Wang, Ahmed Elazab, Xianjun Fu, Wenwen Min, Feiwei Qin, Gangyong Jia, Xiaopeng Fan","doi":"10.1007/s00335-024-10034-7","DOIUrl":null,"url":null,"abstract":"<p><p>Schizophrenia is a debilitating psychiatric disorder that can significantly affect a patient's quality of life and lead to permanent brain damage. Although medical research has identified certain genetic risk factors, the specific pathogenesis of the disorder remains unclear. Despite the prevalence of research employing magnetic resonance imaging, few studies have focused on the gene level and gene expression profile involving a large number of screened genes. However, the high dimensionality of genetic data presents a great challenge to accurately modeling the data. To tackle the current challenges, this study presents a novel feature selection strategy that utilizes heuristic feature fusion and a multi-objective optimization genetic algorithm. The goal is to improve classification performance and identify the key gene subset for schizophrenia diagnostics. Traditional gene screening techniques are inadequate for accurately determining the precise number of key genes associated with schizophrenia. Our innovative approach integrates a filter-based feature selection method to reduce data dimensionality and a multi-objective optimization genetic algorithm for improved classification tasks. By combining the filtering and wrapper methods, our strategy leverages their respective strengths in a deliberate manner, leading to superior classification accuracy and a more efficient selection of relevant genes. This approach has demonstrated significant improvements in classification results across 11 out of 14 relevant datasets. The performance on the remaining three datasets is comparable to the existing methods. Furthermore, visual and enrichment analyses have confirmed the practicality of our proposed method as a promising tool for the early detection of schizophrenia.</p>","PeriodicalId":18259,"journal":{"name":"Mammalian Genome","volume":" ","pages":"241-255"},"PeriodicalIF":2.7000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of important gene signatures in schizophrenia through feature fusion and genetic algorithm.\",\"authors\":\"Zhixiong Chen, Ruiquan Ge, Changmiao Wang, Ahmed Elazab, Xianjun Fu, Wenwen Min, Feiwei Qin, Gangyong Jia, Xiaopeng Fan\",\"doi\":\"10.1007/s00335-024-10034-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Schizophrenia is a debilitating psychiatric disorder that can significantly affect a patient's quality of life and lead to permanent brain damage. Although medical research has identified certain genetic risk factors, the specific pathogenesis of the disorder remains unclear. Despite the prevalence of research employing magnetic resonance imaging, few studies have focused on the gene level and gene expression profile involving a large number of screened genes. However, the high dimensionality of genetic data presents a great challenge to accurately modeling the data. To tackle the current challenges, this study presents a novel feature selection strategy that utilizes heuristic feature fusion and a multi-objective optimization genetic algorithm. The goal is to improve classification performance and identify the key gene subset for schizophrenia diagnostics. Traditional gene screening techniques are inadequate for accurately determining the precise number of key genes associated with schizophrenia. Our innovative approach integrates a filter-based feature selection method to reduce data dimensionality and a multi-objective optimization genetic algorithm for improved classification tasks. By combining the filtering and wrapper methods, our strategy leverages their respective strengths in a deliberate manner, leading to superior classification accuracy and a more efficient selection of relevant genes. This approach has demonstrated significant improvements in classification results across 11 out of 14 relevant datasets. The performance on the remaining three datasets is comparable to the existing methods. Furthermore, visual and enrichment analyses have confirmed the practicality of our proposed method as a promising tool for the early detection of schizophrenia.</p>\",\"PeriodicalId\":18259,\"journal\":{\"name\":\"Mammalian Genome\",\"volume\":\" \",\"pages\":\"241-255\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mammalian Genome\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00335-024-10034-7\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mammalian Genome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00335-024-10034-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/21 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Identification of important gene signatures in schizophrenia through feature fusion and genetic algorithm.
Schizophrenia is a debilitating psychiatric disorder that can significantly affect a patient's quality of life and lead to permanent brain damage. Although medical research has identified certain genetic risk factors, the specific pathogenesis of the disorder remains unclear. Despite the prevalence of research employing magnetic resonance imaging, few studies have focused on the gene level and gene expression profile involving a large number of screened genes. However, the high dimensionality of genetic data presents a great challenge to accurately modeling the data. To tackle the current challenges, this study presents a novel feature selection strategy that utilizes heuristic feature fusion and a multi-objective optimization genetic algorithm. The goal is to improve classification performance and identify the key gene subset for schizophrenia diagnostics. Traditional gene screening techniques are inadequate for accurately determining the precise number of key genes associated with schizophrenia. Our innovative approach integrates a filter-based feature selection method to reduce data dimensionality and a multi-objective optimization genetic algorithm for improved classification tasks. By combining the filtering and wrapper methods, our strategy leverages their respective strengths in a deliberate manner, leading to superior classification accuracy and a more efficient selection of relevant genes. This approach has demonstrated significant improvements in classification results across 11 out of 14 relevant datasets. The performance on the remaining three datasets is comparable to the existing methods. Furthermore, visual and enrichment analyses have confirmed the practicality of our proposed method as a promising tool for the early detection of schizophrenia.
期刊介绍:
Mammalian Genome focuses on the experimental, theoretical and technical aspects of genetics, genomics, epigenetics and systems biology in mouse, human and other mammalian species, with an emphasis on the relationship between genotype and phenotype, elucidation of biological and disease pathways as well as experimental aspects of interventions, therapeutics, and precision medicine. The journal aims to publish high quality original papers that present novel findings in all areas of mammalian genetic research as well as review articles on areas of topical interest. The journal will also feature commentaries and editorials to inform readers of breakthrough discoveries as well as issues of research standards, policies and ethics.