{"title":"Statement of Retraction: Creep and mechanical properties of aluminium A356 composites reinforced with coated and un-coated MWCNTs fabricated using the stir casting method","authors":"","doi":"10.1080/02670836.2023.2264127","DOIUrl":"https://doi.org/10.1080/02670836.2023.2264127","url":null,"abstract":"","PeriodicalId":18232,"journal":{"name":"Materials Science and Technology","volume":"214 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135695795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Low-cycle fatigue mashing behaviours of HTRB630 high-strength steel exposed to high temperatures","authors":"Li Gao, Mei-Ling Zhuang, Gong Zuo, Chuanzhi Sun","doi":"10.1080/02670836.2023.2257536","DOIUrl":"https://doi.org/10.1080/02670836.2023.2257536","url":null,"abstract":"AbstractThe tensile test and low-cycle fatigue test of HTRB630 high-strength steel bars after high-temperature exposure were investigated. Based on the plastic strain energy density theory of mashing behaviours, the values of parameters K and n in the Ramberg–Osgood stress–strain relationship were obtained. The Coffin–Manson model was modified for further modelling of specimens exposed to different temperatures. A fitted formula for the relationship between the plastic strain energy density and fatigue life of HTRB630 high-strength steel bar specimens was established. The parameters obtained in this study can provide a reference for further investigation of the seismic performance of HTRB630 steel bars reinforced concrete structures after exposure to high temperatures.KEYWORDS: HTRB630 high-strength steel barshigh temperature exposurelow-cycle fatigue propertymashing behaviourmodified Coffin–Manson model AcknowledgementsThis research has been supported by China Scholarship Council; the Natural Science Research Project of Jiangsu Province Colleges and Universities (21KJD560002), China; Suqian Natural Science Foundation Project (K202012), China; Project funded by the research and innovation team of engineering structure seismic technology of Suqian University in 2020, China; Suqian City Guiding Science and Technology Plan Project (Z2020137), China; Research and Innovation Team Project of Suqian College (2021TD04), China; and the Fifth Provincial Research Funding Project of ‘333 High-level Talent Training’ in 2020 (BRA2020241), China; The Youth Fund Project of Suqian College (2023XQNA03).Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was supported by Project funded by the Research And Innovation Team of Engineering Structure Seismic Technology of Suqian University in 2020, China; Suqian City Guiding Science and Technology Plan Project [grant number Z2020137]; the Natural Science Research Project of Jiangsu Province Colleges and Universities [grant number 21KJD560002]; The Youth Fund Project of Suqian College [grant number 2023XQNA03]; China Scholarship Council; Suqian Natural Science Foundation Project [grant number K202012]; the Fifth Provincial Research Funding Project of “333 High-level Talent Training” in 2020 [grant number BRA2020241]; Research and Innovation Team Project of Suqian College [grant number 2021TD04].","PeriodicalId":18232,"journal":{"name":"Materials Science and Technology","volume":"241 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135397238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Polymer nanocomposite films of Sr-doped BiVO4 for photodegradation of malachite green","authors":"B. M. Nithin, A. G. Jineesh, N. Manikanda Prabu","doi":"10.1080/02670836.2023.2253079","DOIUrl":"https://doi.org/10.1080/02670836.2023.2253079","url":null,"abstract":"Nanosized m-BiVO4 and Sr-doped derivatives were prepared by solid state reactions, to produce Bi1-xSrxVO4 (X = 0%, 4%, 8% & 12%). XRD and Raman investigations confirmed the formation of BiVO4 phase. 8% and 12% doped samples contained a small fraction of secondary t-BiVO4 phase. SEM images exhibited flat and irregular nanoparticles (64–70 nm). Estimated band gaps were in visible region (2.34–2.42 eV). The materials were used to photodegrade malachite green and BVO-12 showed maximum efficiency ˜ 88% in 180 min. The catalyst was stable and effective for three cycles. Radical scavenging experiments proved the role of holes and hydroxyl radicals. Polymer nanocomposite films made of EOC and photocatalyst were prepared. 0.15 g catalyst loaded film showed maximum activity and recyclability.","PeriodicalId":18232,"journal":{"name":"Materials Science and Technology","volume":"46 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77253391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shenghe Wang, Song Li, Qianqian Cui, Z. Wen, Juncai Sun
{"title":"Constructing superior rate-performance manganese-based anode for lithium-ion batteries by tuning interface effect","authors":"Shenghe Wang, Song Li, Qianqian Cui, Z. Wen, Juncai Sun","doi":"10.1080/02670836.2023.2245655","DOIUrl":"https://doi.org/10.1080/02670836.2023.2245655","url":null,"abstract":"Interface engineering is an effective way to improve the electrochemical performance of electrode materials for LIBs. Point contact interfaces in composites are constructed by growing of Mn3O4 nanoparticles on the surface of acetylene black (AB). The prepared electrode materials exhibit excellent rate capability (355.7 mAh g−1 at 6.4 A g−1) and cycling stability (1386.7 mAh g−1 after 300 cycles at 1 A g−1). The presence of AB in the composite reduces the charge transfer resistance and improves the cycling stability of the electrode. Moreover, the interface between the composites increases the contribution of pseudocapacitance, which will facilitate the electrode kinetics. The construction of interfaces in the composites provides a promising perspective for the design of high-power density anode for LIBs. Highlights Construction of Mn3O4 nanoparticles on 0 D-AB spheres was proposed and synthesised by a facile and scalable strategy. The composite materials exhibit excellent electrochemical performance. The superior rate performance is mainly attributed to the interface effect of composite material.","PeriodicalId":18232,"journal":{"name":"Materials Science and Technology","volume":"43 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74937383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yaoting Jiang, Yuan Jia, Xin-Nan Zou, Jingxi Zhang, Yuxin Zou
{"title":"Evolution mechanism of the low-carbon MgO-based alkali-activated system under different heat-treatment conditions","authors":"Yaoting Jiang, Yuan Jia, Xin-Nan Zou, Jingxi Zhang, Yuxin Zou","doi":"10.1080/02670836.2023.2245659","DOIUrl":"https://doi.org/10.1080/02670836.2023.2245659","url":null,"abstract":"Magnesium silicate hydrate (M-S-H) gel is the main product of MgO-based alkali-activated system (MAAS). The molecular structure and phase changes of M-S-H gel at different temperatures were characterised. The results showed that the initial MgO:SiO2 affected the Mg:Si ratio and the binding water content of M-S-H gel. With the decrease of Mg:Si ratio, the proportion of structural water in the gel decreases. Compared with structured water, the change of free water can more accurately characterise the content of M-S-H gel in the system. Below 600°C, the molecular structure and phase composition are relatively stable. When the temperature reached 1000°C, M-S-H gel transfers from amorphous phase to crystallized phase. The study characterised the evolution of MASS under different heat treatment conditions.","PeriodicalId":18232,"journal":{"name":"Materials Science and Technology","volume":"65 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78138798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Ashoori, M. Jafarzadegan, R. Taghiabadi, M. Saghafi Yazdi, I. Ansarian
{"title":"Enhancing the tribological properties of pure Ti by pinless friction surface stirring","authors":"M. Ashoori, M. Jafarzadegan, R. Taghiabadi, M. Saghafi Yazdi, I. Ansarian","doi":"10.1080/02670836.2023.2249749","DOIUrl":"https://doi.org/10.1080/02670836.2023.2249749","url":null,"abstract":"Friction surface stirring (FSS) was employed to enhance the tribological properties of commercially pure Ti (CP-Ti). Applying FSS under the optimised process parameters (i.e. rotation and traverse speeds of 100 rpm and 8 mm/min, respectively) was found to increase the surface hardness of as-received CP-Ti from about 200–630 HV. The sliding wear resistance was therefore increased by 76, 76, and 85% under applied loads of 5, 10, and 20 N, respectively. The average friction coefficient (AFC) of CP-Ti also reduced considerably by the FSS. For instance, the AFC was reduced from 0.67 ± 0.07 and 1.04 ± 0.14 to about 0.33 ± 0.03 and 0.45 ± 0.04 at the applied loads of 5 and 20 N, respectively. The wear and friction mechanisms were also discussed.","PeriodicalId":18232,"journal":{"name":"Materials Science and Technology","volume":"53 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75933094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gaurav Kumar, T. Bhandakkar, S. Mishra, A. Gokhale
{"title":"Micromechanics-based understanding of the stability of film-like austenite in steels","authors":"Gaurav Kumar, T. Bhandakkar, S. Mishra, A. Gokhale","doi":"10.1080/02670836.2023.2249746","DOIUrl":"https://doi.org/10.1080/02670836.2023.2249746","url":null,"abstract":"Based on the carbon content and processing technique, the austenite morphology in steels can be either film-like or blocky. Experiments have shown that a film-like morphology of austenite shows a higher resistance to strain-induced martensitic transformation than its blocky counterpart. In the present work, using aspect ratio to distinguish austenite morphology, a micromechanical model is developed to show that the presence of an unfavourable stress field discourages the austenite to martensite transformation in film-like morphology, thereby lending its stable nature compared to the blocky version.","PeriodicalId":18232,"journal":{"name":"Materials Science and Technology","volume":"5 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86571605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
F. Lyu, Leilei Wang, Jiahao Zhang, Mingzhen Du, Zhiwei Dou, Chuanyun Gao, X. Zhan
{"title":"Parameters prediction in additively manufactured Al-Cu alloy using back propagation neural network","authors":"F. Lyu, Leilei Wang, Jiahao Zhang, Mingzhen Du, Zhiwei Dou, Chuanyun Gao, X. Zhan","doi":"10.1080/02670836.2023.2246772","DOIUrl":"https://doi.org/10.1080/02670836.2023.2246772","url":null,"abstract":"The relationship between tensile strength, wire feeding speed and travel speed is built based on Back Propagation (BP) neural network during the wire arc additive manufacturing (WAAM) process. The introduction of a genetic algorithm for optimising the BP neural network (GA-BP) and incorporation of additional parameter combinations through the forward model markedly enhance the prediction accuracy of the process parameter reverse model. The BP neural network with a genetic algorithm model exhibits excellent training results, and the sample population regression reaches 0.97. An error value of the optimised model is only 3.10% for wire feeding speed prediction, only 1.55% for travel speed prediction. The GA-BP reverse model optimises WAAM process parameters and achieves a tensile strength exceeding 230 MPa.","PeriodicalId":18232,"journal":{"name":"Materials Science and Technology","volume":"14 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83466098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Tlili, S. Bouyegh, A. Daoui, A. Guedri, Mohamed Islam Tlili, L. Tairi, M. Djama, R. Graine, Djihad Charmati
{"title":"Investigation on microstructure and mechanical properties of boron-modified 13Cr5Ni2Mo by powder-pack boriding","authors":"S. Tlili, S. Bouyegh, A. Daoui, A. Guedri, Mohamed Islam Tlili, L. Tairi, M. Djama, R. Graine, Djihad Charmati","doi":"10.1080/02670836.2023.2245657","DOIUrl":"https://doi.org/10.1080/02670836.2023.2245657","url":null,"abstract":"ABSTRACT The main objective of the present paper is to investigate the effect of pack boriding treatment at 950°C/4 h on surface 13 Cr supermartensitic stainless steel. Scanning electron microscopy and X-ray diffractometry were used to characterise the grown boride layers microstructures. In addition, we performed 3D profilometry, microhardness measurements, nanoindentation tests with a Berkovich diamond tip, Daimler-Benz Rockwell-C adhesion, and ball-on-disk wear tests in order to evaluate the mechanical properties. After boriding, the phases were found to be iron borides (FeB/Fe2B), chromium borides (CrB), nickel borides (Ni2B), and molybdenum borides (Mo2B). The results showed that the use of the powder-pack boriding process on 13Cr SMSS at 950°C/4 h conducted in the presence of dual phases (FeB/Fe2B) improved the mechanical properties compared to untreated material.","PeriodicalId":18232,"journal":{"name":"Materials Science and Technology","volume":"26 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85870808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hui Tan, Wenyuan Chen, Juanjuan Chen, Z. Zhu, Shengyu Zhu, Jun Yang
{"title":"Tribological behaviours of Mo–Si–B–xTi alloys against Al2O3 ceramic and AISI 52100 steel","authors":"Hui Tan, Wenyuan Chen, Juanjuan Chen, Z. Zhu, Shengyu Zhu, Jun Yang","doi":"10.1080/02670836.2023.2247917","DOIUrl":"https://doi.org/10.1080/02670836.2023.2247917","url":null,"abstract":"In this study, the Mo–Si–B alloys containing 10–30 wt% Ti were prepared by spark plasma sintering. The dry sliding tribological properties against Al2O3 ceramic and AISI 52100 steel were thoroughly investigated, and the corresponding wear mechanism was explored. The results indicate that the tribological properties of the MoSiBTi alloys are highly dependent on the Ti content and property of counterpart materials. The dominant wear mechanism of the MoSiBTi alloys sliding against Al2O3 ceramic is severe abrasive and adhesive wear and it transforms to mild abrasive and adhesive wear when coupled with AISI 52100 steel. It confirms that the MoSiBTi/AISI 52100 steel friction pairs show more preferable wear resistance, which is more suitable for room temperature tribological applications.","PeriodicalId":18232,"journal":{"name":"Materials Science and Technology","volume":"42 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77081355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}