Enhancing the tribological properties of pure Ti by pinless friction surface stirring

IF 1.7 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
M. Ashoori, M. Jafarzadegan, R. Taghiabadi, M. Saghafi Yazdi, I. Ansarian
{"title":"Enhancing the tribological properties of pure Ti by pinless friction surface stirring","authors":"M. Ashoori, M. Jafarzadegan, R. Taghiabadi, M. Saghafi Yazdi, I. Ansarian","doi":"10.1080/02670836.2023.2249749","DOIUrl":null,"url":null,"abstract":"Friction surface stirring (FSS) was employed to enhance the tribological properties of commercially pure Ti (CP-Ti). Applying FSS under the optimised process parameters (i.e. rotation and traverse speeds of 100 rpm and 8 mm/min, respectively) was found to increase the surface hardness of as-received CP-Ti from about 200–630 HV. The sliding wear resistance was therefore increased by 76, 76, and 85% under applied loads of 5, 10, and 20 N, respectively. The average friction coefficient (AFC) of CP-Ti also reduced considerably by the FSS. For instance, the AFC was reduced from 0.67 ± 0.07 and 1.04 ± 0.14 to about 0.33 ± 0.03 and 0.45 ± 0.04 at the applied loads of 5 and 20 N, respectively. The wear and friction mechanisms were also discussed.","PeriodicalId":18232,"journal":{"name":"Materials Science and Technology","volume":"53 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/02670836.2023.2249749","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Friction surface stirring (FSS) was employed to enhance the tribological properties of commercially pure Ti (CP-Ti). Applying FSS under the optimised process parameters (i.e. rotation and traverse speeds of 100 rpm and 8 mm/min, respectively) was found to increase the surface hardness of as-received CP-Ti from about 200–630 HV. The sliding wear resistance was therefore increased by 76, 76, and 85% under applied loads of 5, 10, and 20 N, respectively. The average friction coefficient (AFC) of CP-Ti also reduced considerably by the FSS. For instance, the AFC was reduced from 0.67 ± 0.07 and 1.04 ± 0.14 to about 0.33 ± 0.03 and 0.45 ± 0.04 at the applied loads of 5 and 20 N, respectively. The wear and friction mechanisms were also discussed.
用无针摩擦表面搅拌提高纯钛的摩擦学性能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Science and Technology
Materials Science and Technology 工程技术-材料科学:综合
CiteScore
2.70
自引率
5.60%
发文量
0
审稿时长
3 months
期刊介绍: 《Materials Science and Technology》(MST) is an international forum for the publication of refereed contributions covering fundamental and technological aspects of materials science and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信