M. Ashoori, M. Jafarzadegan, R. Taghiabadi, M. Saghafi Yazdi, I. Ansarian
{"title":"用无针摩擦表面搅拌提高纯钛的摩擦学性能","authors":"M. Ashoori, M. Jafarzadegan, R. Taghiabadi, M. Saghafi Yazdi, I. Ansarian","doi":"10.1080/02670836.2023.2249749","DOIUrl":null,"url":null,"abstract":"Friction surface stirring (FSS) was employed to enhance the tribological properties of commercially pure Ti (CP-Ti). Applying FSS under the optimised process parameters (i.e. rotation and traverse speeds of 100 rpm and 8 mm/min, respectively) was found to increase the surface hardness of as-received CP-Ti from about 200–630 HV. The sliding wear resistance was therefore increased by 76, 76, and 85% under applied loads of 5, 10, and 20 N, respectively. The average friction coefficient (AFC) of CP-Ti also reduced considerably by the FSS. For instance, the AFC was reduced from 0.67 ± 0.07 and 1.04 ± 0.14 to about 0.33 ± 0.03 and 0.45 ± 0.04 at the applied loads of 5 and 20 N, respectively. The wear and friction mechanisms were also discussed.","PeriodicalId":18232,"journal":{"name":"Materials Science and Technology","volume":"53 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing the tribological properties of pure Ti by pinless friction surface stirring\",\"authors\":\"M. Ashoori, M. Jafarzadegan, R. Taghiabadi, M. Saghafi Yazdi, I. Ansarian\",\"doi\":\"10.1080/02670836.2023.2249749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Friction surface stirring (FSS) was employed to enhance the tribological properties of commercially pure Ti (CP-Ti). Applying FSS under the optimised process parameters (i.e. rotation and traverse speeds of 100 rpm and 8 mm/min, respectively) was found to increase the surface hardness of as-received CP-Ti from about 200–630 HV. The sliding wear resistance was therefore increased by 76, 76, and 85% under applied loads of 5, 10, and 20 N, respectively. The average friction coefficient (AFC) of CP-Ti also reduced considerably by the FSS. For instance, the AFC was reduced from 0.67 ± 0.07 and 1.04 ± 0.14 to about 0.33 ± 0.03 and 0.45 ± 0.04 at the applied loads of 5 and 20 N, respectively. The wear and friction mechanisms were also discussed.\",\"PeriodicalId\":18232,\"journal\":{\"name\":\"Materials Science and Technology\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/02670836.2023.2249749\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/02670836.2023.2249749","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Enhancing the tribological properties of pure Ti by pinless friction surface stirring
Friction surface stirring (FSS) was employed to enhance the tribological properties of commercially pure Ti (CP-Ti). Applying FSS under the optimised process parameters (i.e. rotation and traverse speeds of 100 rpm and 8 mm/min, respectively) was found to increase the surface hardness of as-received CP-Ti from about 200–630 HV. The sliding wear resistance was therefore increased by 76, 76, and 85% under applied loads of 5, 10, and 20 N, respectively. The average friction coefficient (AFC) of CP-Ti also reduced considerably by the FSS. For instance, the AFC was reduced from 0.67 ± 0.07 and 1.04 ± 0.14 to about 0.33 ± 0.03 and 0.45 ± 0.04 at the applied loads of 5 and 20 N, respectively. The wear and friction mechanisms were also discussed.
期刊介绍:
《Materials Science and Technology》(MST) is an international forum for the publication of refereed contributions covering fundamental and technological aspects of materials science and engineering.