{"title":"Size-controlled synthesis and sensing properties of anthracene-based metal-organic frameworks for detection of singlet oxygen in photodynamic therapy","authors":"","doi":"10.1016/j.matchemphys.2024.130112","DOIUrl":"10.1016/j.matchemphys.2024.130112","url":null,"abstract":"<div><div>Developing fluorescent probes to detect singlet oxygen (<sup>1</sup>O<sub>2</sub>) is essential to understanding the critical role of <sup>1</sup>O<sub>2</sub> in immunological and pathological processes in various organs. In this study, size-controlled DPA-MOF (X) with good biocompatibility and excellent optical stability was used as a nanoprobe for real-time imaging and monitoring of <sup>1</sup>O<sub>2</sub> in photodynamic therapy (PDT). The experimentally synthesized DPA-MOF (X), which can be adjusted in particle size by dilution, exhibits blue fluorescence signals. The results show that smaller-sized DPA-MOF (60) has a faster response to <sup>1</sup>O<sub>2</sub> and higher cell uptake ability. The ratio of fluorescence intensity (<em>F</em><sub><em>0</em></sub>/<em>F</em><sub><em>i</em></sub>) of DPA-MOF (60) showed a linear correlation with the concentration of <sup>1</sup>O<sub>2</sub> in the range of 0–7 mM, with a detection limit of 88 μM. DPA-MOF has a distinct advantage over most carrier loading sensors in that it effectively avoids the issue of fluorophore leakage from the nanomaterial matrix, thereby improving its stability. Additionally, the controlled synthesis of DPA-MOF can potentially improve probe accumulation in tumors and lower the uptake by the body system. This study presents a luminescent metal-organic framework (LMOF) sensor that utilizes a <sup>1</sup>O<sub>2</sub> capture unit as a measuring ligand. This sensor has been shown to have exceptional biocompatibility and can be utilized for highly specific and efficient detection of <sup>1</sup>O<sub>2</sub> in vivo or living cells.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Poly (acrylic acid-co-2-hydroxyethyl methacrylate)-grafted gum ghatti hydrogel for capturing heavy metal ions","authors":"","doi":"10.1016/j.matchemphys.2024.130106","DOIUrl":"10.1016/j.matchemphys.2024.130106","url":null,"abstract":"<div><div>In this work, a facile route is explored for the synthesis of a novel polymer composite-based hydrogel (PC-hydrogel). The ratio of 2-(Hydroxyethyl) methacrylate (HEMA) and acrylic acid (AA) is optimized first based on Fourier transform infra-red spectroscopy, swelling ratio (SR%) and surface negative charge (PZC). Results indicate that PC-hydrogel composed of copolymer of HEMA: AA in 1:4 ratio is optimized, for grafting on Gum ghatti (Gg) during free-radical graft copolymerization process. Among all other possible combination of HEMA: AA, 1:4 ratio grafted Gg is termed as PC-hydrogel [Poly (AA-co-HEMA)-g-Gg]. PC-hydrogel exhibited negative surface charge over a wide range of pH owing to increase in AA. The swelling (g/g) and water retention ratio (%) of the prepared hydrogel have been found to be 342.6, 385 & 412.6 g/g and 74.83, 65.30 & 57.86 % in grey, tap and distilled water respectively. Furthermore, PC-hydrogel is applied for capturing Cu<sup>2+</sup> and Co<sup>2+</sup> ions in aqueous phases. Experimental results showed that adsorption process was pH-dependent, and the maximum capturing of Cu<sup>2+</sup> and Co<sup>2+</sup> was observed at neutral pH 7. Among different adsorption isotherms models like Langmuir, Freundlich, and Temkin models, experimental data fitted closely with the Langmuir adsorption model showing a maximum adsorption capacity of 381.67 and 328.94 mg/g for Cu<sup>2+</sup> and Co<sup>2+</sup> respectively. The capturing of metal ion followed pseudo-second-order rate model [rate constant k = 1.7 x 10<sup>−4</sup> for Cu<sup>2+</sup> and 1.5 x 10<sup>−4</sup> for Co<sup>2+</sup> g/(mg.min)]. The PC-hydrogel property retained its uptake capacity of metal ions up to the three successive adsorption−desorption cycles, and exhibited higher selectivity towards Cu<sup>2+</sup> and Co<sup>2+</sup> and other (NaCl, MgCl<sub>2</sub>, CaCl<sub>2</sub>) coexisting ions.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142586221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"In-situ formation of polymer-stabilized/-free cholesteric bi-layer photonic crystal","authors":"","doi":"10.1016/j.matchemphys.2024.130093","DOIUrl":"10.1016/j.matchemphys.2024.130093","url":null,"abstract":"<div><div>Tunable photonic crystals based on cholesteric liquid crystals (CLCs) have attracted considerable attention due to their tunable optical properties and self-assembly capabilities. Despite the rapid development of various CLC-based devices, the narrow bandwidth of the photonic bandgap in CLCs limits their use in some practical applications. This paper presents a method for forming polymer-stabilized and polymer-free cholesteric bilayer photonic crystals in polymer-stabilized cholesteric liquid crystals (PSCLCs). By tuning the concentration of reactive monomers and controlling the UV polymerization conditions, two different PBGs can be formed within a single PSCLC cell. As the concentration of RM257 increases to 40 % and the intensity of UV light is used at 22 mW/cm<sup>2</sup>, the distance between the two reflectance bands can reach 200 nm, reflecting green and red light. The dynamic formation process and the tunability of these cholesteric bilayer structures under electric fields and temperature variations are investigated. By controlling the temperature and electric field, the reflectance of the liquid crystal layer can be reduced from 50 % to 15 %, resulting in a single-band reflection. In addition, we have proposed a tunable polarization volume grating based on the cholesteric bi-layer photonic crystal, which can diffract two specific light colors.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Study of a fluorine-free silane-based film on an aluminum alloy via drop-coating method with the purpose of providing hydrophobic and corrosion protection properties","authors":"","doi":"10.1016/j.matchemphys.2024.130099","DOIUrl":"10.1016/j.matchemphys.2024.130099","url":null,"abstract":"<div><div>This work sought to developed a fluorine-free, water-repellent silane-based film on 5052 aluminum alloy by studying the incorporation of Hexadecyltrimethoxysilane (HDTMS) into or over the silica gel film to protect against corrosion in a saline environment. Additionally, the interface of the silane-based film was studied using liquids such as soybean oil, diesel oil, and lubricating oil. Silica gel particles were deposited by dripping a solution of silica gel using design of experiment approach. The porosity of the silica gel film was assessed employing the potentiodynamic polarization technique. The condition of the more cohesive silica gel film was chemically modified by dripping a low concentration solution of HDTMS. The functionalized film on the aluminum alloy exhibited a contact angle of 136°, oleophilic behavior for soybean oil and lubricating oil, and superoleophilic character for diesel oil. Notably, hydrophobic film exhibited chemical (acid, alkaline, saline) and thermal stabilities (50–150 °C). The protective effect of the functionalized film against corrosion ions was confirmed by Electrochemical Impedance Spectroscopy in a saline solution over 7 days. These results suggest a fluorine-free alternative approach for thin film development and the study of its multifunctionality, including enhanced corrosion resistance, water-diesel oil separation, and potential applications in anti-fouling.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Preparation and application of a novel supercapacitor from chemically activated red calliandra","authors":"","doi":"10.1016/j.matchemphys.2024.130104","DOIUrl":"10.1016/j.matchemphys.2024.130104","url":null,"abstract":"<div><div>In recent years, supercapacitors have been incorporated into hypercar units, making them more attractive to researchers. The exploration and development of low-cost supercap components are investigated for mass production preparation. The current study reveals an activated carbon-based supercapacitor from a novel biomass red calliandra. The activated carbon was chemically produced at 800 for 60 min in a pilot-scale tubular electric reactor with a capacity of 3 kg. Previously, the raw was soaked by phosphate (H) and ammonium (NH) compounds for 18 h. Activated carbon was then used to assemble the supercapacitor with the respective active slurry composition: activated carbon, conductive carbon, adhesive 80:10:10 (<em>w/w</em>), and LiPF<sub>6</sub> electrolyte. The products were characterised by proximate, ultimate, iodine adsorption, surface area analyser, X-ray diffraction, infrared spectrum, cyclic voltammetry (CV), and Galvanostatic charge-discharge (GCD). H-activated carbon is hygroscopic and exhibits a crystalline structure, while NH-activated carbon has the highest adsorption and surface area of 757 mg/g and 627 m<sup>2</sup>/g. CV and GCD agreed to establish the H-supercap as the best prototype by exhibiting specific capacitances of 146 and 167 F/g. Comparative studies were further summarised to evaluate a novel species among the previous raws and the suitability of the preferred activated carbon characteristics for supercapacitor fabrication. The results crowned the red calliandra species at a decent rank among them and were suitable for sustainable green campaigns.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hydrothermally synthesized cobalt oxide/polydimethylsiloxane based photothermal absorber for superior thermal energy conversion and water evaporation application","authors":"","doi":"10.1016/j.matchemphys.2024.130103","DOIUrl":"10.1016/j.matchemphys.2024.130103","url":null,"abstract":"<div><div>Solar-driven interfacial evaporation has garnered worldwide interest in recent years due to its unique vapor generating capacity using sustainable solar energy. Many photoabsorber have been studied for conversion of photothermal energy and heat absorption. Unfortunately, the majority of the absorber materials in supply are pricey, and the installation procedures tend to be intricate. This research focuses on the ongoing difficulty of creating cost-efficient photothermal materials that have excellent light absorption and simple manufacturing processes. We created a novel composites coated with Cobalt oxide and polydimethylsiloxane (Co<sub>3</sub>O<sub>4</sub>/PDMS) which successfully produce energy and purify water utilizing an extensive spectrum of solar energy. Hydrothermally synthesized Co<sub>3</sub>O<sub>4</sub> particles exhibit distinct optical properties in the UV–Vis region due to ligand field transitions and charge transfer between Co<sup>2</sup>⁺ and Co³⁺ ions. Additionally, these particles exhibits a strong absorption in the NIR region due to the intervalence charge transfer and d-d transitions, enhancing their photothermal activity. This culminates in outstanding light-to-heat transformation in the Co<sub>3</sub>O<sub>4</sub>/PDMS composite, which maintains a surface temperature of 42.7 °C compared to 33.7 °C for pristine PDMS under standard 1 sun intensity for 5 min. The flexible Co<sub>3</sub>O<sub>4</sub>/PDMS composite transfers solar energy to electric energy, producing ∼99 mV with 1 sun irradiation, while bare PDMS only achieved a voltage of 61 mV under 1 sun circumstances. An efficient double layer Co<sub>3</sub>O<sub>4</sub>/PDMS@MF sponge achieved an evaporation rate of 1.33 kg m<sup>−2</sup> h<sup>−1</sup> with the photothermal conversion efficiency of 68.8 %. These results motivate thorough investigation in photothermal potential of Co<sub>3</sub>O<sub>4,</sub> revealing the promising possibilities for harnessing solar-thermal energy and presents a novel method for using solar power to purify water and generate electricity.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Incorporation of B and V oxides into bioactive glass by melt quenching: In vitro studies for bone regeneration applications","authors":"","doi":"10.1016/j.matchemphys.2024.130096","DOIUrl":"10.1016/j.matchemphys.2024.130096","url":null,"abstract":"<div><div>In this study, glass-ceramics with a weight composition of 40-X% SiO₂, 24.5 % CaO, 14.5 % Na₂O, 6.0 % P₂O₅, 15 % B₂O₃, and X% V₂O₅ (X = 1, 3, and 5) were produced using the melt quenching method. Vanadium pentoxide and boron oxide were suggested to lower production melting temperatures. Several techniques were used to confirm the composition and amorphous nature of the glass-ceramics, including X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetry (TG), energy dispersive spectroscopy (EDS), and differential thermal analysis (DTA). All samples were incubated in simulated body fluid (SBF) solution at 37 °C for 3, 7, 14, and 21 days to determine their bioactivity under in vitro conditions. The XRD pattern indicates insufficient crystalline phase formation, possibly due to V₂O₅ inhibiting apatite growth and promoting amorphous calcium phosphate. Precipitates in the glass-ceramic show increased lattice constants when apatite combines with boron. SEM images reveal surface precipitation and the development of hydroxyapatite (HA) after 21 days of immersion in SBF; EDS analysis confirms the presence of the expected ions. The Fourier Transform Infrared Spectrophotometer (FTIR) analysis shows the dominance of the silicate network in the glass-ceramics, with characteristic bands at specific frequencies.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142553779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhanced dielectric performance of Y3Fe5O12 via incorporating LiFe5O8 thin film","authors":"","doi":"10.1016/j.matchemphys.2024.130102","DOIUrl":"10.1016/j.matchemphys.2024.130102","url":null,"abstract":"<div><div>Y<sub>3</sub>Fe<sub>5</sub>O<sub>12</sub> (YIG) dielectric material has recently attracted much attention in microwave applications, where improving permittivity and reducing dielectric loss is crucial. In this work, the LiFe<sub>5</sub>O<sub>8</sub>/Y<sub>3</sub>Fe<sub>5</sub>O<sub>12</sub> (LFO/YIG) composite dielectric film was fabricated by the chemical solution deposition method. The introduction of LFO thin film into YIG formed defect dipoles and established an internal electric field, thus enhancing dielectric performance. The permittivity of the LFO/YIG composite film is 19.49 at 1 kHz, which is twice that of pure YIG film, and the dielectric loss is also reduced from 1.01 to 0.47. Meanwhile, the response characteristics of the composite film to the bias field exhibit asymmetric behavior. In comparison to the single YIG film, the LFO/YIG composite film shows good thermal stability.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Flexible poly (ethylene-co-vinyl acetate)/copper oxide nanocomposites: A promising avenue for energy storage applications","authors":"","doi":"10.1016/j.matchemphys.2024.130095","DOIUrl":"10.1016/j.matchemphys.2024.130095","url":null,"abstract":"<div><div>The use of metal oxide nanoparticles in polymeric materials to improve optical properties, dielectric constant, mechanical strength, and electrical conductivity has generated significant interest in fabricating flexible optoelectronic and energy storage devices. Herein, copper oxide (CuO) nanoparticle-reinforced poly (ethylene-<em>co</em>-vinyl acetate) (EVA) nanocomposites were prepared using a solvent-free two roll mill mixing method. Fourier transform infrared (FTIR) analysis reveals the distinct absorption peaks of CuO in the EVA matrix. The addition of CuO nanoparticles improved the crystallinity of EVA, as confirmed by X-ray diffraction (XRD). The addition of CuO to EVA led to an increase in the refractive index and a decrease in bandgap energy, as well as a broadening and intensification of UV–visible absorption, indicating strong interactions between CuO nanoparticles and the EVA matrix. Field emission scanning electron microscopy (FE-SEM) and high-resolution transmission electron microscopy (HR-TEM) revealed a homogeneous dispersion of CuO nanoparticles throughout the EVA matrix. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) demonstrated that the incorporation of CuO nanoparticles into EVA significantly enhanced its thermal properties. The electrical characteristics studies showed that the AC conductivity and dielectric constant of EVA increased significantly with increasing temperatures and CuO nanoparticle loading levels. EVA containing 5 wt% CuO exhibited the highest conductivity and the lowest activation energy. CuO nanoparticle reinforcement significantly enhanced the tensile, tear, and impact strength of EVA while reducing elongation at break up to a particular concentration. The nanocomposites containing 5 wt% CuO exhibited the highest tensile, tear resistance, and impact strengths, outperforming virgin EVA by 85 %, 103.6 %, and 83.16 %, respectively. These findings suggest that EVA/CuO nanocomposites are promising candidates for flexible dielectric materials.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142560538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"High entropy alloys: Next-generation material for space exploration","authors":"","doi":"10.1016/j.matchemphys.2024.130091","DOIUrl":"10.1016/j.matchemphys.2024.130091","url":null,"abstract":"<div><div>High entropy materials (HEMs) have become a prominent research focus because of their remarkable properties, such as superior thermal stability, mechanical strength, and oxidation resistance, including High entropy alloys (HEAs), high-entropy polymers (HEPs), and high-entropy ceramics (HECs). These unique materials hold significant potential for advanced applications across leading industries, including aerospace, defense, military, biomedical, and chemical sectors. An overview of a diverse range of HEAs, their effects, classification, and various entropy alloy manufacturing techniques is presented to discover the optimized HEAs for significant applications particularly relevant to the aerospace industry. Their exceptional performance in the numerous fields of applications has made HEAs a promising alternative over solitary metals, alloys, and composites. Furthermore, it highlights numerous challenges faced in manufacturing. It presents a detailed analysis of the future scope of their development to enhance their applicability in aerospace and other high-demand fields.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142586222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}