Materials Chemistry and Physics最新文献

筛选
英文 中文
Thiazole-based flame retardant for polyamide vs. a sulfur-free flame retardant with similar phosphorus and nitrogen content 聚酰胺用噻唑基阻燃剂与磷氮含量相似的无硫阻燃剂的比较
IF 4.3 3区 材料科学
Materials Chemistry and Physics Pub Date : 2024-10-15 DOI: 10.1016/j.matchemphys.2024.130043
Harald Rupp, Jason Ullmann, Kshitij S. Shinde, Anke Schadewald
{"title":"Thiazole-based flame retardant for polyamide vs. a sulfur-free flame retardant with similar phosphorus and nitrogen content","authors":"Harald Rupp,&nbsp;Jason Ullmann,&nbsp;Kshitij S. Shinde,&nbsp;Anke Schadewald","doi":"10.1016/j.matchemphys.2024.130043","DOIUrl":"10.1016/j.matchemphys.2024.130043","url":null,"abstract":"<div><div>Polyamides are a promising candidate for the research of sulfur-containing flame retardants (FR). A new material based on 2-aminothiazole and 2-methyl-1,2-oxaphospholane-5-on-2-oxide is prepared and introduced into polyamide 12. To understand the effect of sulfur incorporation in its molecular structure, the new flame retardant is compared to a sulfur-free counterpart, revealing distinct variations in their self-extinguishing characteristics. The higher concentration of heteroatoms results in more flame diluting volatiles in the gas phase during thermal decomposition. The addition of the novel flame retardant containing phosphorus, nitrogen and sulfur, named TP, with only 5 m% into polyamide results in a UL-94 V-0 rating. Simultaneously, the limiting oxygen index increased to 31 %, compared to neat polyamide 12 with 24 %. Remarkably, the moisture absorption remains the same with the thiazole-based FR and the mechanical properties are only slightly decreased. This research reveals the flame retardant capabilities and advantages of a thiazole-based phosphorus compounds in polyamide.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"329 ","pages":"Article 130043"},"PeriodicalIF":4.3,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142533484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural phase transition from rhombohedral to monoclinic phase and physical properties of (1-x) Bi0.85La0.15FeO3 – (x) Ca0.5Sr0.5TiO3 ceramics prepared by the solid-state route 固态路线制备的 (1-x) Bi0.85La0.15FeO3 - (x) Ca0.5Sr0.5TiO3 陶瓷从斜方相到单斜相的结构相变及物理性质
IF 4.3 3区 材料科学
Materials Chemistry and Physics Pub Date : 2024-10-13 DOI: 10.1016/j.matchemphys.2024.130033
J.R.D. Ruiz López , Subhash Sharma , Francisco Brown , V.E. Alvarez-Montano , Jesús M. Siqueiros , Oscar Raymond Herrera
{"title":"Structural phase transition from rhombohedral to monoclinic phase and physical properties of (1-x) Bi0.85La0.15FeO3 – (x) Ca0.5Sr0.5TiO3 ceramics prepared by the solid-state route","authors":"J.R.D. Ruiz López ,&nbsp;Subhash Sharma ,&nbsp;Francisco Brown ,&nbsp;V.E. Alvarez-Montano ,&nbsp;Jesús M. Siqueiros ,&nbsp;Oscar Raymond Herrera","doi":"10.1016/j.matchemphys.2024.130033","DOIUrl":"10.1016/j.matchemphys.2024.130033","url":null,"abstract":"<div><div>In the present work, a series of solid solutions were synthesized using the solid-state reaction method for x = 0.0, 0.05, 0.10, and 0.15 in system (1-x)Bi<sub>0.85</sub>La<sub>0.15</sub>FeO₃-(x)Ca<sub>0.5</sub>Sr<sub>0.5</sub>TiO<sub>3</sub> or ((1-x)BLFO-(x)CSTO) ceramics. Structural, optical, dielectric, and ferroelectric properties were studied in detail to investigate the impact of CSTO doping in BFO. Rietveld analysis of X-ray diffraction data of all samples revealed the formation of a single-phase solid solution with a distorted rhombohedral perovskite structure for x = 0.00 and 0.05, characterized by <em>R</em>3<em>c</em> symmetry, a mix of rhombohedral (<em>R</em>3<em>c</em>) and monoclinic (<em>Cc</em>) phases for x = 0.10 (<em>R</em>3<em>c</em> 31 % and <em>Cc</em> 69 %), whereas for x = 0.15 a single-phase solid solution with <em>Cc</em> symmetry was found. UV–visible analysis demonstrated that the optical band gap was increased from 2.11 eV for x = 0.0 to 2.21 eV for x = 0.15 in the visible range, and can be used in photovoltaics applications. The room temperature dielectric properties were measured, and a crucial role of CSTO was revealed in modifying the dielectric properties of BLFO ceramics; the dielectric constant and dielectric loss at 10 kHz change from <em>ε</em><sub><em>r</em></sub> = 82 and <em>tanδ</em> = 0.88 for x = 0.0 to <em>ε</em><sub>r</sub> = 116 and <em>tanδ</em> = 1.08 for x = 0.15. The leakage current density decreases while increasing the CSTO % from x = 0.0 to 0.15 due to the suppression of oxygen and Bi vacancies, a fact that is further reflected in the ferroelectric properties of CSTO-doped BFO ceramics. Room temperature ferroelectric properties improved with CSTO doping, and P<sub>r</sub> was found to be 0.24 μC/cm<sup>2</sup>, 0.28 μC/cm<sup>2</sup>, and 0.84 μC/cm<sup>2</sup> for x = 0.05, 0.10, and 0.15, respectively.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"328 ","pages":"Article 130033"},"PeriodicalIF":4.3,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142432463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating the influence of CuS ratio on sun light – Driven photocatalytic performance of ZnS:CuS nanocomposites and reusability of PVA/ZnS: CuS polymer membrane 研究 CuS 比率对 ZnS:CuS 纳米复合材料日光驱动光催化性能的影响以及 PVA/ZnS:CuS 聚合物膜的可重复使用性
IF 4.3 3区 材料科学
Materials Chemistry and Physics Pub Date : 2024-10-12 DOI: 10.1016/j.matchemphys.2024.130025
S. Murugan, G. Vignesh, M. Ashokkumar
{"title":"Investigating the influence of CuS ratio on sun light – Driven photocatalytic performance of ZnS:CuS nanocomposites and reusability of PVA/ZnS: CuS polymer membrane","authors":"S. Murugan,&nbsp;G. Vignesh,&nbsp;M. Ashokkumar","doi":"10.1016/j.matchemphys.2024.130025","DOIUrl":"10.1016/j.matchemphys.2024.130025","url":null,"abstract":"<div><div>In this study, ZnS and CuS nanocomposites (NCs) were synthesized using a simple and cost-effective co-precipitation method. These NCs were evaluated for their photocatalytic activity in degrading Crystal Violet dye under sunlight. ZnS:CuS nanocomposites were created using QDs in ratios of 4:1, 1:1, and 1:4. The synthesized NCs were analyzed for structural, morphological, chemical purity, and optical properties using XRD, TEM, EDAX, and UV–Vis spectroscopy. Structural analysis revealed phase-pure cubic and hexagonal structures for ZnS and CuS nanoparticles, respectively. The average crystallite sizes of the pure ZnS and CuS and their composites (4:1, 1:1 and 1:4) ratios are 1.66, 14.7, 1.90, 11.2 and 12.1 nm, respectively. TEM analysis confirmed aggregated and isolated particles, matching the SAED pattern and d-spacing values from XRD analysis. Increasing the CuS ratio in the composites enhanced absorption due to a bandgap reduction from 3.99 eV to 3.35 eV. The pure ZnS and CuS NPs and their composites in ratios of 4:1, 1:1, and 1:4 exhibited degradation efficiency of approximately 89 %, 87 %, 99 %, 97 %, and 96 % respectively over a period of 180 min. ZnS:CuS (4:1) exhibited outstanding photocatalytic activity, achieving 90 % degradation in 80 min under sunlight. Detailed discussions included the proposed photocatalytic mechanism, scavenging activity, and dosage effect. Hemolytic activity assays indicated that the synthesized NCs are nonhemolytic. The PVA and PVA/ZnS:CuS (4:1) composite membrane exhibited degradation efficiency of 63 % and 92 % respectively. ZnS:CuS (4:1) NCs, with their superior capacity for wastewater treatment, were incorporated into a PVA polymer membrane to enhance reusability and prevent photo-corrosion.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"328 ","pages":"Article 130025"},"PeriodicalIF":4.3,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142432464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Catalytic benzylation of arenes using metal-ion modified HY zeolites for sustainable synthesis 利用金属离子修饰的 HY 沸石催化炔烃的苄基化,实现可持续合成
IF 4.3 3区 材料科学
Materials Chemistry and Physics Pub Date : 2024-10-11 DOI: 10.1016/j.matchemphys.2024.130034
Meihuan Lu , Satish Gudala , Zheng Liu , Archi Sharma , Xinyu Liu , Jianxin Yang
{"title":"Catalytic benzylation of arenes using metal-ion modified HY zeolites for sustainable synthesis","authors":"Meihuan Lu ,&nbsp;Satish Gudala ,&nbsp;Zheng Liu ,&nbsp;Archi Sharma ,&nbsp;Xinyu Liu ,&nbsp;Jianxin Yang","doi":"10.1016/j.matchemphys.2024.130034","DOIUrl":"10.1016/j.matchemphys.2024.130034","url":null,"abstract":"<div><div>Microporous zeolites are commonly employed as catalysts for the benzylation of arenes and benzyl alcohol. However, their catalytic efficiency is often compromised by diffusion limitations, particularly in reactions involving larger arenes. In this study, we developed metal-ion modified HY zeolites using Zn, Mg, and Ni as dopants and investigated their catalytic performance in the benzylation of a range of arenes, including toluene, benzene, mesitylene, p-xylene and with benzyl alcohol (BzOH). The structural and acidic properties of the modified HY zeolites were characterized using a combination of techniques including scanning electron microscopy (SEM), X-ray diffraction (XRD), N₂ adsorption–desorption isotherms, Fourier-transform infrared (FTIR) spectroscopy, ammonia temperature-programmed desorption (NH₃-TPD), and proton magic angle spinning nuclear magnetic resonance (<sup>1</sup>H MAS NMR) spectroscopy. The presence of catalytically active Brønsted acid sites (BAS) was detected by 1H MAS NMR spectroscopy and it was demonstrated that the HY zeolite's acidity is considerably modulated by the addition of metal ions. The catalytic evaluations indicated that the metal-ion modified HY zeolites exhibited superior activity compared to unmodified HY zeolite, with the catalytic performance following the order Zn/HY &gt; Ni/HY &gt; Mg/HY &gt; HY for the benzylation of benzyl alcohol with mesitylene. Further investigation into the mechanism revealed that the synergistic effect of metal ions and acidity plays a crucial role in enhancing the accessibility of arenes to the surface catalytic sites and thereby improving catalytic performance. These findings underscore the importance of the metal-acidity synergy in optimizing the catalytic efficacy of modified HY zeolites for selective benzylation reactions.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"328 ","pages":"Article 130034"},"PeriodicalIF":4.3,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142432466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tunable diameter of electrospun fibers using empirical scaling laws of electrospinning parameters 利用电纺参数的经验缩放定律调节电纺纤维的直径
IF 4.3 3区 材料科学
Materials Chemistry and Physics Pub Date : 2024-10-10 DOI: 10.1016/j.matchemphys.2024.130009
M.A. Munawar , F. Nilsson , D.W. Schubert
{"title":"Tunable diameter of electrospun fibers using empirical scaling laws of electrospinning parameters","authors":"M.A. Munawar ,&nbsp;F. Nilsson ,&nbsp;D.W. Schubert","doi":"10.1016/j.matchemphys.2024.130009","DOIUrl":"10.1016/j.matchemphys.2024.130009","url":null,"abstract":"<div><div>This study introduces a new semi-empirical power-law model for predicting electrospun fiber diameter (<em>D</em>), addressing key processing parameters. Polycaprolactone (PCL) fibers were produced using a solvent mixture of Trichloromethane (TCM), Dimethyl Formamide (DMF), and ethanol (EtOH). Systematic experiments validated an existing theoretical model and led to the development of a novel model: <em>D</em> ∼ (c<sup>1/2</sup><em>η</em><sup><em>1/3</em></sup><em>Q</em><sup><em>1/5</em></sup><em>X</em><sup><em>2/3</em></sup><em>)/(U</em><sup><em>2/3</em></sup><em>ω</em><sup><em>1/4</em></sup><em>I</em><sup><em>1/5</em></sup>). This model incorporates seven crucial parameters: viscosity (<em>η</em>), concentration (<em>c</em>), voltage (<em>U</em>), spinning distance (<em>X</em>), flow–rate (<em>Q</em>), current (<em>I</em>) and collector wheel rotation speed (<em>ω</em>). The model was validated through a partial factorial design experiment, proving to be a valuable and reliable tool for predicting fiber diameters and optimizing electrospinning processes. The ability to control fiber diameter is essential for tailoring electrospun fibers for various applications, including biomedicine, filtration, sensors, and lightweight materials.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"329 ","pages":"Article 130009"},"PeriodicalIF":4.3,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142533479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study of grain orientation effect on the corrosion behavior of biocompatible magnesium alloy Mg–2Zn-0.5Ca 研究晶粒取向对生物相容性镁合金 Mg-2Zn-0.5Ca 腐蚀行为的影响
IF 4.3 3区 材料科学
Materials Chemistry and Physics Pub Date : 2024-10-10 DOI: 10.1016/j.matchemphys.2024.130039
Zheng Chao, Binjun Wang, Chun Xu, Yu Li
{"title":"Study of grain orientation effect on the corrosion behavior of biocompatible magnesium alloy Mg–2Zn-0.5Ca","authors":"Zheng Chao,&nbsp;Binjun Wang,&nbsp;Chun Xu,&nbsp;Yu Li","doi":"10.1016/j.matchemphys.2024.130039","DOIUrl":"10.1016/j.matchemphys.2024.130039","url":null,"abstract":"<div><div>In recent years, biocompatible magnesium alloys have garnered extensive attentions because of their wide applications in clinical medicine. Their excellent biocompatibility allows the avoidance of secondary surgeries for removal. However, magnesium-based biocompatible alloys are still suffering from some shortcomings such as rapid corrosion rate, causing limited service time. Among the factors that influence the corrosion resistance, the grain orientation (GO) is a primary factor influencing its corrosion behavior. Since the surface energy differs among various grains with different orientations, the corrosion sensitivity is anisotropic. Based on the 10T samples, we have established a functional relationship between the reciprocal of corrosion rate and the percentage of each grain orientation. The fitting parameters for the grain orientations of (0001), (1–100), and (11–20) are 0.133, 0.034, and −0.0287, respectively. This intuitively demonstrates that different grain orientations exhibit varying sensitivity to corrosion, with (0001) showing the highest corrosion resistance, while (11–20) has a negative impact on improving corrosion resistance. Furthermore, when we applied this formula to another set of 3T samples, we found that the calculated results matched well with the actual measurements, indicating that this formula has a certain degree of accuracy in quantifying the relationship between corrosion rate and grain orientation.</div><div>(3T and 10T represent for the annealing treatment made at 400 °C for 3 and 10 min respectively.)</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"328 ","pages":"Article 130039"},"PeriodicalIF":4.3,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142432581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nickel-doped barium oxide nanoclusters as efficient electrode for the detection of 4-nitrophenol 掺镍氧化钡纳米团簇作为检测 4-硝基苯酚的高效电极
IF 4.3 3区 材料科学
Materials Chemistry and Physics Pub Date : 2024-10-10 DOI: 10.1016/j.matchemphys.2024.130037
Manawwer Alam , Aditya Srivastava , Wejdan Al-Otaibi , Rizwan Wahab , Shamshad A. Khan , Sadia Ameen
{"title":"Nickel-doped barium oxide nanoclusters as efficient electrode for the detection of 4-nitrophenol","authors":"Manawwer Alam ,&nbsp;Aditya Srivastava ,&nbsp;Wejdan Al-Otaibi ,&nbsp;Rizwan Wahab ,&nbsp;Shamshad A. Khan ,&nbsp;Sadia Ameen","doi":"10.1016/j.matchemphys.2024.130037","DOIUrl":"10.1016/j.matchemphys.2024.130037","url":null,"abstract":"<div><div>This study presents the synthesis, characterization, and application of Ni-doped barium oxide nanoclusters (BaNiO<sub>3</sub>NCs), as a highly efficient material for the 4-nitrophenol (4-NP) sensing. X-ray diffraction (XRD) analysis confirmed that the formation of desired crystalline structure while scanning electron microscopy (SEM) and transmission electron microscopy (TEM) provided insights into the morphology and size distribution of the nanoparticles. Energy-dispersive X-ray spectroscopy (EDX) confirmed the successful incorporation of Ni ions into the barium metal oxide lattice. The chemical bonds present in the synthesized substance were further explored through characterization using Fourier-transform infrared spectroscopy (FT IR). Comprehensive details regarding the elemental oxidation states and surface chemical composition were obtained via use of X-ray photoelectron spectroscopy (XPS) analysis. Zeta potential analysis clarified the surface charge features, and UV–Vis spectroscopy was utilized to study the optical properties of the prepared material. Thermogravimetric analysis (TGA) was also performed to evaluate the material's thermal stability. Through electrochemical experiments, the sensing capability of BaNiO<sub>3</sub>NCs/GCE towards 4-NP detection was assessed. The results showed a promising 3.70 μA μM<sup>−1</sup> cm<sup>−2</sup> sensitivity, 2.71 μM detection limit, and stability of 15 μM for 24 days. The synthesized material's structure-property correlations are comprehensively explained by this multimodal characterization technique, underscoring the material's promise for environmental monitoring and pollution detection applications.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"328 ","pages":"Article 130037"},"PeriodicalIF":4.3,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142432484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interfacial coupling of sandwich like Zn3V2O8/ZnO/NiCo2S4 nano-heterojunction for the enhanced photocatalytic degradation of rifampicin 用于增强利福平光催化降解的三明治状 Zn3V2O8/ZnO/NiCo2S4 纳米异质结的界面耦合
IF 4.3 3区 材料科学
Materials Chemistry and Physics Pub Date : 2024-10-09 DOI: 10.1016/j.matchemphys.2024.130023
S. Sudheer Khan , V. Vinotha Sre , M. Swedha , Asad Syed , Abdallah M. Elgorban , Islem Abid , Ling Shing Wong
{"title":"Interfacial coupling of sandwich like Zn3V2O8/ZnO/NiCo2S4 nano-heterojunction for the enhanced photocatalytic degradation of rifampicin","authors":"S. Sudheer Khan ,&nbsp;V. Vinotha Sre ,&nbsp;M. Swedha ,&nbsp;Asad Syed ,&nbsp;Abdallah M. Elgorban ,&nbsp;Islem Abid ,&nbsp;Ling Shing Wong","doi":"10.1016/j.matchemphys.2024.130023","DOIUrl":"10.1016/j.matchemphys.2024.130023","url":null,"abstract":"<div><div>The overuse of antibiotics and the release of these pharmaceuticals into the water system has emerged as a serious issue posing a life-threatening environment to aquatic species. In contrast to various contaminants, antibiotics are specifically engineered for durability and efficacy in the system of the human body (human health). Although this design ensures their performance, it also results in their extended longevity and resilience against degradation in natural contexts. These challenges can be addressed by an advanced oxidation process (AOP) utilizing ternary heterojunction nano catalysts (NCs). In this study, the NCs were synthesized through a combination of calcinated-assisted reverse microemulsion and hydrothermal methods. The synthesized NCs were characterized by using various analytical techniques. The enhanced charge separation and migration in Zn<sub>3</sub>V<sub>2</sub>O<sub>8</sub>/ZnO/NiCo<sub>2</sub>S<sub>4</sub> (ZZN) NCs results in 97.3 % degradation of rifampicin (RIF) within 80 min. ZZN NCs exhibit superior catalytic performance under visible light irradiation compared to its pristine Zn<sub>3</sub>V<sub>2</sub>O<sub>8</sub>, ZnO, NiCo<sub>2</sub>S<sub>4</sub>, and binary ZnO/NiCo<sub>2</sub>S<sub>4</sub>. The enhanced photocatalytic performance can be primarily attributed to the synergetic effects among Zn<sub>3</sub>V<sub>2</sub>O<sub>8</sub>, ZnO, and NiCo<sub>2</sub>S<sub>4</sub> facilitated by the cascade-driven charge transfer mechanism. The prominent reactive oxygen species that participated in photocatalytic degradation activity were found to be superoxide (O<sub>2</sub>•<sup>-</sup>) and hydroxide radicals (•OH) which were confirmed through ESR and quenching experiments. From the practical application perspective, ZZN NCs ternary heterostructure demonstrated excellent stability and durability after being recycled six times. This study serve as a vital reference for future investigation into the photocatalytic mechanism related to heterostructure NCs, highlighting their potential for eco-friendly methods to eliminate pollutants and paves a way for manufacturing innovation in near future.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"329 ","pages":"Article 130023"},"PeriodicalIF":4.3,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142444637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating the mechanical and fracture behaviour of Ti-based nanocomposites reinforced with single and bi-crystalline hBN nanosheets 研究用单晶和双晶 hBN 纳米片增强的钛基纳米复合材料的机械性能和断裂性能
IF 4.3 3区 材料科学
Materials Chemistry and Physics Pub Date : 2024-10-09 DOI: 10.1016/j.matchemphys.2024.130017
Jashveer Singh , Rajesh Kumar , Rakesh Sehgal
{"title":"Investigating the mechanical and fracture behaviour of Ti-based nanocomposites reinforced with single and bi-crystalline hBN nanosheets","authors":"Jashveer Singh ,&nbsp;Rajesh Kumar ,&nbsp;Rakesh Sehgal","doi":"10.1016/j.matchemphys.2024.130017","DOIUrl":"10.1016/j.matchemphys.2024.130017","url":null,"abstract":"<div><div>The design and manufacturing of graphene and hBN-based nanocomposites is taking the era of material design to new horizons. The present article employs MD simulations to investigate the mechanical, fracture, and interfacial behaviour of the Ti-based nanocomposites reinforced with pristine as well as defective single and bi-crystalline hBN nanosheets. The nanocomposites exhibited over ∼100 % improvements in the failure strengths as compared to pristine Ti matrices. Reinforcement of the Ti matrices with single and bi-crystalline hBN nanosheets improved the failure strengths of the nanocomposites from 4.06 GPa to 9.74 GPa and 9.80 GPa, respectively. However, an increase in vacancy defect (Single or Di-vacancy) concentration (0–6%) resulted in a successive reduction of the failure strength of the nanocomposites. Moreover, the deformation mechanisms in Ti matrices reinforced with pristine and defective nanosheets were observed to be governed by {<span><math><mrow><mn>10</mn><mover><mn>1</mn><mo>‾</mo></mover><mn>1</mn></mrow></math></span>} &lt; <span><math><mrow><mn>10</mn><mover><mn>1</mn><mo>‾</mo></mover><mover><mn>2</mn><mo>‾</mo></mover></mrow></math></span> &gt; compression twin and <span><math><mrow><mo>{</mo><mrow><mn>10</mn><mover><mn>1</mn><mo>‾</mo></mover><mn>0</mn></mrow><mo>}</mo></mrow></math></span> &lt; <span><math><mrow><mn>11</mn><mover><mn>2</mn><mo>‾</mo></mover><mn>0</mn></mrow></math></span> &gt; prismatic slip dislocations, respectively. Furthermore, the pull-out and pull-up velocities models of interfacial shear and cohesive strengths, respectively, were employed to confirm the observed results.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"328 ","pages":"Article 130017"},"PeriodicalIF":4.3,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142427067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of composition on the properties of full-Heusler Ti2FexMn1-xAl alloys in spintronics 成分对自旋电子学中全赫斯勒 Ti2FexMn1-xAl 合金特性的影响
IF 4.3 3区 材料科学
Materials Chemistry and Physics Pub Date : 2024-10-09 DOI: 10.1016/j.matchemphys.2024.130013
Abbas A. Abdulridha , Zahra Nourbakhsh , Daryoosh Vashaee
{"title":"Impact of composition on the properties of full-Heusler Ti2FexMn1-xAl alloys in spintronics","authors":"Abbas A. Abdulridha ,&nbsp;Zahra Nourbakhsh ,&nbsp;Daryoosh Vashaee","doi":"10.1016/j.matchemphys.2024.130013","DOIUrl":"10.1016/j.matchemphys.2024.130013","url":null,"abstract":"<div><div>This study explores the structural, electronic, and magnetic characteristics of full-Heusler Ti<sub>2</sub>Fe<sub>x</sub>Mn<sub>1-x</sub>Al alloys for spintronic applications. The regular Heusler structure is identified as the most stable across all x concentrations. The inverse Heusler structure exhibits half-metallic behavior with a finite energy band gap in the spin-up states, while the regular structure shows metallic behavior for both spin directions. Dirac-like points along the M→Γ direction are observed, particularly in alloys with x = 0 and 0.25 (inverse structure) and x = 0.5, 0.75, and 1 (regular structure), indicating advanced electronic properties. Magnetic analysis reveals that Ti atoms' local magnetic moments are antiparallel to those of Mn and Fe atoms. The total magnetic moment is highest for x = 1 (Ti<sub>2</sub>MnAl) and nearly zero for x = 0 (Ti<sub>2</sub>FeAl). Additionally, the inverse Heusler structure achieves 100 % spin polarization at the Fermi energy, underscoring its suitability for spintronic applications. This study highlights the potential of Ti<sub>2</sub>Fe<sub>x</sub>Mn<sub>1-x</sub>Al alloys for future spintronic devices.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"328 ","pages":"Article 130013"},"PeriodicalIF":4.3,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142426953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信