William Ussler III, Gregory J. Doucette, Christina M. Preston, Chloe Weinstock, Nadia Allaf, Brent Roman, Scott Jensen, Kevan Yamahara, Louise A. Lingerfelt, Christina M. Mikulski, Brett W. Hobson, Brian Kieft, Ben-Yair Raanan, Yanwu Zhang, Reagan M. Errera, Steven A. Ruberg, Paul A. Den Uyl, Kelly D. Goodwin, Scott D. Soelberg, Clement E. Furlong, James M. Birch, Christopher A. Scholin
{"title":"Underway measurement of cyanobacterial microcystins using a surface plasmon resonance sensor on an autonomous underwater vehicle","authors":"William Ussler III, Gregory J. Doucette, Christina M. Preston, Chloe Weinstock, Nadia Allaf, Brent Roman, Scott Jensen, Kevan Yamahara, Louise A. Lingerfelt, Christina M. Mikulski, Brett W. Hobson, Brian Kieft, Ben-Yair Raanan, Yanwu Zhang, Reagan M. Errera, Steven A. Ruberg, Paul A. Den Uyl, Kelly D. Goodwin, Scott D. Soelberg, Clement E. Furlong, James M. Birch, Christopher A. Scholin","doi":"10.1002/lom3.10627","DOIUrl":"10.1002/lom3.10627","url":null,"abstract":"<p>Freshwater cyanobacterial harmful algal blooms (CHABs) are a well-known global public health threat. Monitoring and early detection of CHAB toxins are currently accomplished using labor-intensive sampling techniques and subsequent shore-based analyses, with results typically reported 24–48 h after sample collection. We have developed and implemented an uncrewed, autonomous mobile sampler-analytical system capable of conducting targeted in situ toxin measurements in < 2 h. A surface plasmon resonance (SPR) instrument was combined with the environmental sample processor (ESP) to fully automate detection and quantification of particle-associated cyanobacterial microcystins (pMC). This sensor-sampler system was integrated with a long-range autonomous underwater vehicle (LRAUV) and deployed in western Lake Erie for field trials in the summer of 2021. The LRAUV was remotely piloted to acquire samples at selected locations within and adjacent to a CHAB. Sixteen pMC measurements ranging from 0.09 to 0.55 <i>μ</i>g/L lake water were obtained over a 14-day period without recovery of the LRAUV. The SPR/ESP/LRAUV system complements existing satellite, aerial, and manual sampling CHAB survey techniques, and could be used to enhance predictive models that underpin bloom and toxicity forecasts. This system is also extensible to detection of other algal toxins in freshwater and marine environments, with its near real-time assessment of bloom toxin levels potentially offering additional socioeconomic benefits and public health protection in a variety of settings.</p>","PeriodicalId":18145,"journal":{"name":"Limnology and Oceanography: Methods","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lom3.10627","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141351363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joachim W. Dippner, Joseph P. Montoya, Ajit Subramaniam, Jacqueline Umbricht, Maren Voss
{"title":"The Amazon River plume—a Lagrangian view","authors":"Joachim W. Dippner, Joseph P. Montoya, Ajit Subramaniam, Jacqueline Umbricht, Maren Voss","doi":"10.1002/lom3.10626","DOIUrl":"10.1002/lom3.10626","url":null,"abstract":"<p>Hydrographic data, nutrient data and bulk rates of nitrate uptake and primary production were determined in the Amazon River plume (ARP) in the Western Tropical North Atlantic (WTNA) during three cruises in May 2018, June/July 2019, with RV Endeavor and April/May 2021 with RV Meteor. Using daily quasi-geostrophic surface velocity data from satellite observations, the geographical positions of the stations of observations were transformed onto Lagrangian coordinates to obtain a dynamically coherent and consistent spatial distribution. After the transformation, the observed surface salinity and temperature fields were consistent with the flow fields, the ARP formed a coherent structure and the retroflection of the North Brazil Current became visible. By transforming other surface variables such as nitrate concentration, photosynthetically available radiation, turbidity, bulk rates of nitrate uptake, and primary production onto Lagrangian coordinates, patterns became consistent with the physical variables at the surface. The use of “synchronous” fields as done here by transformation onto Lagrangian coordinates is essential for spatially structured analyses of data collected over tens of days in a highly dynamic region characterized by complex flow fields with low persistence such as the WTNA. Therefore, the use of the Lagrangian method provides a powerful tool for exploring spatial distributions of biologically relevant factors in regions with complex and dynamic flow patterns. These spatial distributions are qualitatively in agreement with satellite images of daily sea surface temperature and composites of monthly mean Chlorophyll a distributions.</p>","PeriodicalId":18145,"journal":{"name":"Limnology and Oceanography: Methods","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lom3.10626","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141190767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tristan Blechinger, Denver Link, Jenna K.R. Nelson, Gretchen J.A. Hansen
{"title":"Estimating ethanol correction factors for δ13C and δ15N isotopic signatures of freshwater zooplankton from multiple lakes","authors":"Tristan Blechinger, Denver Link, Jenna K.R. Nelson, Gretchen J.A. Hansen","doi":"10.1002/lom3.10623","DOIUrl":"10.1002/lom3.10623","url":null,"abstract":"<p>In freshwater systems, δ<sup>13</sup>C and δ<sup>15</sup>N stable isotopes can be used to differentiate between pelagic and littoral energy sources and to quantify trophic position. In these ecosystems, crustacean zooplankton are frequently used to characterize the pelagic baseline. Zooplankton samples are often preserved prior to processing and analysis, which can affect isotopic signatures. Variability in preservation effects across studies make it difficult to determine if and how to correct for preservation effects. Here, we develop a correction factor for ethanol preservation and present a flexible statistical method that can be updated with additional data to increase its applicability. We collected zooplankton from five lakes in Minnesota, USA encompassing wide isotopic ranges (δ<sup>13</sup>C from −37.23‰ to −23.96‰; δ<sup>15</sup>N from 3.07‰ to 14.44‰). Changes in zooplankton δ<sup>13</sup>C and δ<sup>15</sup>N signatures were quantified using a Bayesian hierarchical model predicting fresh values from ethanol-preserved values. Ethanol preservation increased δ<sup>13</sup>C by a factor of 1.158 (95% CI 0.866–1.441) and had a negligible effect on δ<sup>15</sup>N (slope = 1.077; 95% CI 0.833–1.359). Lake-specific values did not differ from the overall relationship. K-fold and leave-one-out cross validation tests verified that both models were accurate; RMSE of predicted δ<sup>13</sup>C = 0.701 and RMSE of predicted δ<sup>15</sup>N = 0.590. Our correction factors could be applied to other systems in which baseline δ<sup>13</sup>C and δ<sup>15</sup>N values fall within the range of our study, and this approach also enables the inclusion of data from additional lakes to estimate new corrections.</p>","PeriodicalId":18145,"journal":{"name":"Limnology and Oceanography: Methods","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lom3.10623","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141190628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Robert J. W. Brewin, Thomas G. Brewin, Philip J. Bresnahan, Keiley Davis, Xuerong Sun, Nicola Wilson, Lars Brunner, Giorgio Dall'Olmo
{"title":"Lab on a Secchi disk: A prototype open-source profiling package for low-cost monitoring in aquatic environments","authors":"Robert J. W. Brewin, Thomas G. Brewin, Philip J. Bresnahan, Keiley Davis, Xuerong Sun, Nicola Wilson, Lars Brunner, Giorgio Dall'Olmo","doi":"10.1002/lom3.10624","DOIUrl":"10.1002/lom3.10624","url":null,"abstract":"<p>Owing to the high cost of commercial optical sensors, there is a need to develop low-cost optical sensing packages to expand monitoring of aquatic environments, particularly in under-resourced regions. Visual methods to monitor the optical properties of water, like the Secchi disk and Forel-Ule color scale, remain in use in the modern era owing to their simplicity, low-cost and long history of use. Yet, recent years have seen advances in low-cost, electronic-based optical sensing. Here, the designs of a miniaturized hand-held device (mini-Secchi disk) that measures the Secchi depth and Forel-Ule color are updated. We then extend the device by integrating a small electronic sensing package (Arduino-based) into the Secchi disk, for vertical profiling, combining historic and modern methods for monitoring the optical properties of water into a single, low-cost sensing device, that measures positioning (GPS), light spectra, temperature, and pressure. It is charged and transfers data wirelessly, is encased in epoxy resin, and can be used to derive vertical profiles of spectral light attenuation and temperature, in addition to Secchi depth and Forel-Ule color. We present data from a series of deployments of the package, compare its performance with commercially available instruments, and demonstrate its use for validation of satellite remotely sensed data. Our designs are made openly available to promote community-based development and have potential in communicating and teaching science, participatory science, and low-cost monitoring of aquatic environments.</p>","PeriodicalId":18145,"journal":{"name":"Limnology and Oceanography: Methods","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lom3.10624","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141112606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Small-scale measurement of fracture toughness of muddy marine sediments via bubble injection","authors":"Anika S. Cho, Kelly M. Dorgan, Grant Lockridge","doi":"10.1002/lom3.10625","DOIUrl":"10.1002/lom3.10625","url":null,"abstract":"<p>Muddy marine sediments are elastic materials in which bubbles grow and worms extend their burrows by fracture. Bubble growth and burrowing behavior are dependent on the stiffness and fracture toughness (<i>K</i><sub>Ic</sub>) of these muds. This article describes a custom laboratory apparatus to measure the fracture toughness of muddy, cohesive sediments using a bubble injection method. The system induces fracture in sediment samples by incrementally injecting air through a needle inserted into the sediment. The increasing pneumatic pressure is monitored until it drops abruptly, indicating bubble formation. Fracture toughness is then calculated from the peak pressure at which fracture occurred, following cavitation rheology methods developed for soft gels. The system has produced measurements that compare well to previous data but with better spatial resolution, allowing for characterization of spatial heterogeneity on small scales.</p>","PeriodicalId":18145,"journal":{"name":"Limnology and Oceanography: Methods","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lom3.10625","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141059115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yanwu Zhang, Brian Kieft, Brett W. Hobson, Ben-Yair Raanan, William Ussler III, Christina M. Preston, Reagan M. Errera, Paul A. Den Uyl, Andrea Vander Woude, Gregory J. Doucette, Steven A. Ruberg, Kelly D. Goodwin, James M. Birch, Christopher A. Scholin
{"title":"Using a long-range autonomous underwater vehicle to find and sample harmful algal blooms in Lake Erie","authors":"Yanwu Zhang, Brian Kieft, Brett W. Hobson, Ben-Yair Raanan, William Ussler III, Christina M. Preston, Reagan M. Errera, Paul A. Den Uyl, Andrea Vander Woude, Gregory J. Doucette, Steven A. Ruberg, Kelly D. Goodwin, James M. Birch, Christopher A. Scholin","doi":"10.1002/lom3.10621","DOIUrl":"10.1002/lom3.10621","url":null,"abstract":"<p>Cyanobacterial harmful algal blooms (CyanoHABs) in the Great Lakes pose risks to residential drinking water use, fisheries, and recreation. Active mitigation of these risks requires rapid detection of CyanoHABs and quantification of the toxins they produce. Here, we present a method of using a long-range autonomous underwater vehicle (LRAUV) equipped with a 3<sup>rd</sup>-generation Environmental Sample Processor (3G-ESP) to search for and adaptively sample areas of high chlorophyll potentially representative of CyanoHAB biomass. In August 2021, this method was used in western Lake Erie. The experiment highlighted the effectiveness of the LRAUV autonomous search-and-sample methodology, and demonstrated how an interdisciplinary team located in different states virtually coordinated LRAUV operations and directed sampling activities via Internet connectivity using shared, web-based situational awareness tools. The advancements made provide a foundation for future work to increase LRAUV autonomy and adaptiveness for CyanoHAB studies and monitoring in both freshwater and marine settings.</p>","PeriodicalId":18145,"journal":{"name":"Limnology and Oceanography: Methods","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lom3.10621","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140802220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A simple method for the quantification of amidic bioavailable dissolved organic nitrogen in seawater","authors":"Robert T. Letscher, Lihini I. Aluwihare","doi":"10.1002/lom3.10622","DOIUrl":"10.1002/lom3.10622","url":null,"abstract":"<p>A targeted method for the quantification of bioavailable amide N found in marine DON (bDON) is presented. The method utilizes mild acid hydrolysis to convert amide N found in proteins and <i>N</i>-acetyl amino polysaccharides to primary amine containing products that are measured using a highly sensitive (nanomolar range and precision) fluorometric technique with addition of <i>O</i>-phthaldialdehyde. We find amidic bDON concentrations ranging from 0.08 to 1.82 <i>μ</i>M N within waters from the upper 300 m in the southern California Current, Southern California Bight, and subtropical North Pacific representing 15–33% of bulk DON concentrations. Bioassay experiments from the North Pacific revealed consumption of ~20% of the in situ bDON within 5 days. The method represents a simple and rapid tool for the quantification of bioavailable DON concentrations in seawater with improved analytical precision over traditional estimates of bulk DON concentrations.</p>","PeriodicalId":18145,"journal":{"name":"Limnology and Oceanography: Methods","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140655411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A simple and rapid method for measuring total free sulfides in marine sediments","authors":"Peter J. Cranford","doi":"10.1002/lom3.10619","DOIUrl":"10.1002/lom3.10619","url":null,"abstract":"<p>The quantitatively most important process by which organic matter in marine sediments is mineralized is performed by sulfate-reducing bacteria, resulting in the accumulation of total dissolved (free) sulfide (S<sup>2−</sup> = H<sub>2</sub>S + HS<sup>−</sup> + S<sup>2−</sup>) in porewater. S<sup>2−</sup> is toxic to benthic animals and vascular plants and measurements serve as a proxy for the deleterious effects of organic enrichment on benthic habitat, biodiversity, and ecosystem function. Methodologies for measuring S<sup>2−</sup> in water have been pursued for at least a century, and standard approaches employ colorimetry (methylene blue and iodometric titration) and potentiometry. These standard methods require between 1 and 200 mL of porewater, which can be laborious to obtain. The ion-selective electrode method is widely employed as a practical approach for sediment S<sup>2−</sup> analysis but lacks analytical robustness and is highly prone to measurement biases that misinform research and environmental management decisions. A technically simple method is described, based on direct UV spectrophotometry, for the near real-time field analysis of small porewater samples. The procedure prevents known measurement biases associated with particulate sulfide interference, S<sup>2−</sup> volatilization and oxidation, and represents a practical approach for monitoring organic enrichment and classifying benthic ecological quality status. Porewater concentrations between 200 and 15,000 <i>μ</i>mol L<sup>−1</sup> can be measured and instrument calibration is highly stable. The method has the capacity to rapidly process and analyze sediment samples at low cost, which helps resolve the problem of chronic under-sampling associated with the use of traditional S<sup>2−</sup> methods.</p>","PeriodicalId":18145,"journal":{"name":"Limnology and Oceanography: Methods","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140663027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amandine M. N. Caruana, Eva Bucciarelli, Céline Deleporte, Emilie Le Floc'h, Fabienne Hervé, Manon Le Goff
{"title":"Comparison of methods for DMSP measurements in dinoflagellate cultures","authors":"Amandine M. N. Caruana, Eva Bucciarelli, Céline Deleporte, Emilie Le Floc'h, Fabienne Hervé, Manon Le Goff","doi":"10.1002/lom3.10618","DOIUrl":"10.1002/lom3.10618","url":null,"abstract":"<p>A comparison of three analytical methods (the indirect GC-FPD and MIMS, and direct LC-MS/MS) for dimethylsulfoniopropionate (DMSP) measurements was conducted to assess their accuracy and reliability. The three methods showed a linear response but are distinguished by their linearity range, the largest being for MIMS. All three methods showed good precision on <i>Alexandrium minutum</i> samples (2–12%). The variability between the three methods when comparing analyses of <i>A. minutum</i> replicates was 11%, with the DMSP measurements by LC-MS/MS being the highest. This result also confirms that indirect DMSP measurement after hydrolysis for GC or MIMS methods does not lead to an overestimation of DMSP values in <i>A. minutum</i>. A special focus was made on the more recent LC-MS/MS method including further assays in sample preparation and storage from cultures of the dinoflagellate <i>A. minutum</i>. Dinoflagellate cells should be harvested by gentle filtration (< 5 cm Hg) or slow centrifugation (500 × <i>g</i>) to retrieve the largest DMSP pool. For the LC-MS/MS method, MeOH used for cell extraction should be added prior to freezing (to prevent DMSP degradation). Samples will then be stable in frozen storage for at least 2 months. Finally, direct and indirect methods are complementary for identifying the exact DMSP fraction among dimethylsulfide-producing compounds that compose total and particulate DMSP pools issued from newly screened organisms or environmental samples.</p>","PeriodicalId":18145,"journal":{"name":"Limnology and Oceanography: Methods","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lom3.10618","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140671570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marcus W. Beck, Jill M. Arriola, Maria Herrmann, Raymond G. Najjar
{"title":"Fitting metabolic models to dissolved oxygen data: The estuarine Bayesian single-station estimation method","authors":"Marcus W. Beck, Jill M. Arriola, Maria Herrmann, Raymond G. Najjar","doi":"10.1002/lom3.10620","DOIUrl":"10.1002/lom3.10620","url":null,"abstract":"<p>Continuous measurements of dissolved oxygen (DO) are useful for quantifying ecosystem metabolism, which is critical for understanding estuarine biogeochemistry and ecology, but current methods applied to these data may lead to estimates that are physically impossible and poorly constrained errors. Here, we present a new approach for estimating estuarine metabolism: Estuarine BAyesian Single-station Estimation (EBASE). EBASE applies a Bayesian framework to a simple process-based model and DO observations, allowing the estimation of critical model parameters, specifically light efficiency and respiration, as informed by a set of prior distributions. EBASE improves upon the stream-based model from which it was derived by accommodating missing DO data and allowing the user to set the time period over which parameters are estimated. We demonstrate that EBASE can recover known metabolic parameters from a synthetic time series, even in the presence of noise (e.g., due to tidal advection) and when prior distributions are uninformed. Optimization periods of 7 and 30 d are more preferable than 1 d. A comparison with the more-conventional method of Odum reveals the ability of EBASE to avoid unphysical results (such as negative photosynthesis and respiration) and improves when the DO data are detided. EBASE is available using open-source software (R) and can be readily applied to multiple years of long-term monitoring data that are available in many estuaries. Overall, EBASE provides an accessible method to parameterize a simple metabolic model appropriate for estuarine systems and will provide additional understanding of processes that influence ecosystem status and condition.</p>","PeriodicalId":18145,"journal":{"name":"Limnology and Oceanography: Methods","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lom3.10620","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140636730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}