海底颗粒图像测速系统的开发和实验室评估,用于海洋渗漏中的气泡和湍流测量

IF 2.1 3区 地球科学 Q2 LIMNOLOGY
Xuchen Ying, Mustahsin Reasad, Binbin Wang
{"title":"海底颗粒图像测速系统的开发和实验室评估,用于海洋渗漏中的气泡和湍流测量","authors":"Xuchen Ying,&nbsp;Mustahsin Reasad,&nbsp;Binbin Wang","doi":"10.1002/lom3.10670","DOIUrl":null,"url":null,"abstract":"<p>We present the development and laboratory evaluation of RPiPIV, an underwater particle image velocimetry (PIV) system controlled by a Raspberry Pi. Designed specifically to measure bubble characteristics and bubble-induced flow in natural hydrocarbon seeps, RPiPIV comprises three primary pressure enclosures, housing a consumer-grade laser for particle illumination, a Gig-E camera for image capture, a Raspberry Pi for system control, and essential supporting electronics for voltage conversion, battery management, and remote connection. Operating on 24–36 V DC power, the RPiPIV system can be deployed tethered onto a remotely operated vehicle or self-contained for extended duration measurements. Comparing the RPiPIV and a laboratory high-speed camera system, we conducted assessments of bubble imaging in a bubble stream and PIV measurements in a water jet, bubble-chain flow, and single-orifice bubble plume. Laboratory assessments revealed that bubble diameter estimates differed by approximately 5%. In PIV measurements, mean axial velocities exhibited differences of approximately 5%, while turbulent normal and shear stresses showed variances within 10–30%. Dissipation rates of turbulence kinetic energy differed by approximately 60%. These findings underscore the system's potential for reliably quantifying complex multiphase flow characteristics in deep-sea environments.</p>","PeriodicalId":18145,"journal":{"name":"Limnology and Oceanography: Methods","volume":"23 3","pages":"139-154"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lom3.10670","citationCount":"0","resultStr":"{\"title\":\"Development and laboratory assessment of a subsea particle image velocimetry system for bubble and turbulence measurements in marine seeps\",\"authors\":\"Xuchen Ying,&nbsp;Mustahsin Reasad,&nbsp;Binbin Wang\",\"doi\":\"10.1002/lom3.10670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present the development and laboratory evaluation of RPiPIV, an underwater particle image velocimetry (PIV) system controlled by a Raspberry Pi. Designed specifically to measure bubble characteristics and bubble-induced flow in natural hydrocarbon seeps, RPiPIV comprises three primary pressure enclosures, housing a consumer-grade laser for particle illumination, a Gig-E camera for image capture, a Raspberry Pi for system control, and essential supporting electronics for voltage conversion, battery management, and remote connection. Operating on 24–36 V DC power, the RPiPIV system can be deployed tethered onto a remotely operated vehicle or self-contained for extended duration measurements. Comparing the RPiPIV and a laboratory high-speed camera system, we conducted assessments of bubble imaging in a bubble stream and PIV measurements in a water jet, bubble-chain flow, and single-orifice bubble plume. Laboratory assessments revealed that bubble diameter estimates differed by approximately 5%. In PIV measurements, mean axial velocities exhibited differences of approximately 5%, while turbulent normal and shear stresses showed variances within 10–30%. Dissipation rates of turbulence kinetic energy differed by approximately 60%. These findings underscore the system's potential for reliably quantifying complex multiphase flow characteristics in deep-sea environments.</p>\",\"PeriodicalId\":18145,\"journal\":{\"name\":\"Limnology and Oceanography: Methods\",\"volume\":\"23 3\",\"pages\":\"139-154\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lom3.10670\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Limnology and Oceanography: Methods\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/lom3.10670\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LIMNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Limnology and Oceanography: Methods","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/lom3.10670","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LIMNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了一个由树莓派控制的水下粒子图像测速(PIV)系统RPiPIV的开发和实验室评估。RPiPIV专为测量天然碳氢化合物渗漏中的气泡特性和气泡诱导流动而设计,包括三个主要压力外壳,其中包括用于颗粒照明的消费级激光器,用于图像捕获的gige相机,用于系统控制的树莓派,以及用于电压转换,电池管理和远程连接的基本支持电子设备。RPiPIV系统工作在24 - 36v直流电源上,可以部署在远程操作的车辆上,也可以独立部署,进行长时间的测量。通过比较RPiPIV和实验室高速摄像系统,我们对气泡流中的气泡成像和水射流、气泡链流和单孔气泡羽流中的PIV测量进行了评估。实验室评估显示气泡直径估计相差约5%。在PIV测量中,平均轴向速度的差异约为5%,而湍流法向应力和剪应力的差异在10-30%之间。湍流动能耗散率相差约60%。这些发现强调了该系统在可靠地量化深海环境中复杂多相流特性方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Development and laboratory assessment of a subsea particle image velocimetry system for bubble and turbulence measurements in marine seeps

Development and laboratory assessment of a subsea particle image velocimetry system for bubble and turbulence measurements in marine seeps

We present the development and laboratory evaluation of RPiPIV, an underwater particle image velocimetry (PIV) system controlled by a Raspberry Pi. Designed specifically to measure bubble characteristics and bubble-induced flow in natural hydrocarbon seeps, RPiPIV comprises three primary pressure enclosures, housing a consumer-grade laser for particle illumination, a Gig-E camera for image capture, a Raspberry Pi for system control, and essential supporting electronics for voltage conversion, battery management, and remote connection. Operating on 24–36 V DC power, the RPiPIV system can be deployed tethered onto a remotely operated vehicle or self-contained for extended duration measurements. Comparing the RPiPIV and a laboratory high-speed camera system, we conducted assessments of bubble imaging in a bubble stream and PIV measurements in a water jet, bubble-chain flow, and single-orifice bubble plume. Laboratory assessments revealed that bubble diameter estimates differed by approximately 5%. In PIV measurements, mean axial velocities exhibited differences of approximately 5%, while turbulent normal and shear stresses showed variances within 10–30%. Dissipation rates of turbulence kinetic energy differed by approximately 60%. These findings underscore the system's potential for reliably quantifying complex multiphase flow characteristics in deep-sea environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
3.70%
发文量
56
审稿时长
3 months
期刊介绍: Limnology and Oceanography: Methods (ISSN 1541-5856) is a companion to ASLO''s top-rated journal Limnology and Oceanography, and articles are held to the same high standards. In order to provide the most rapid publication consistent with high standards, Limnology and Oceanography: Methods appears in electronic format only, and the entire submission and review system is online. Articles are posted as soon as they are accepted and formatted for publication. Limnology and Oceanography: Methods will consider manuscripts whose primary focus is methodological, and that deal with problems in the aquatic sciences. Manuscripts may present new measurement equipment, techniques for analyzing observations or samples, methods for understanding and interpreting information, analyses of metadata to examine the effectiveness of approaches, invited and contributed reviews and syntheses, and techniques for communicating and teaching in the aquatic sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信