Macromolecular bioscience最新文献

筛选
英文 中文
Steps Toward Recapitulating Endothelium: A Perspective on the Next Generation of Hemocompatible Coatings 重塑内皮的步骤:透视下一代血液兼容涂层。
IF 4.4 4区 医学
Macromolecular bioscience Pub Date : 2024-07-29 DOI: 10.1002/mabi.202400152
Lena Witzdam, Tom White, Cesar Rodriguez-Emmenegger
{"title":"Steps Toward Recapitulating Endothelium: A Perspective on the Next Generation of Hemocompatible Coatings","authors":"Lena Witzdam,&nbsp;Tom White,&nbsp;Cesar Rodriguez-Emmenegger","doi":"10.1002/mabi.202400152","DOIUrl":"10.1002/mabi.202400152","url":null,"abstract":"<p>Endothelium, the lining in this blood vessel, orchestrates three main critical functions such as protecting blood components, modulating of hemostasis by secreting various inhibitors, and directing clot digestion (fibrinolysis) by activating tissue plasminogen activator. No other surface can perform these tasks; thus, the contact of blood and blood-contacting medical devices inevitably leads to the activation of coagulation, often causing device failure, and thromboembolic complications. This perspective, first, discusses the biological mechanisms of activation of coagulation and highlights the efforts of advanced coatings to recapitulate one characteristic of endothelium, hereafter single functions of endothelium and noting necessity of the synergistic integration of its three main functions. Subsequently, it is emphasized that to overcome the challenges of blood compatibility an endothelium-mimicking system is needed, proposing a synergy of bottom-up synthetic biology, particularly synthetic cells, with passive- and bioactive surface coatings. Such integration holds promise for developing advanced biomaterials capable of recapitulating endothelial functions, thereby enhancing the hemocompatibility and performance of blood-contacting medical devices.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mabi.202400152","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141788578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Silk Sericin and Its Effect on Skin Wound Healing: A State of the Art 丝胶及其对皮肤伤口愈合的影响:技术现状。
IF 4.4 4区 医学
Macromolecular bioscience Pub Date : 2024-07-29 DOI: 10.1002/mabi.202400145
Łukasz Mazurek, Mateusz Rybka, Jan Jurak, Jakub Frankowski, Marek Konop
{"title":"Silk Sericin and Its Effect on Skin Wound Healing: A State of the Art","authors":"Łukasz Mazurek,&nbsp;Mateusz Rybka,&nbsp;Jan Jurak,&nbsp;Jakub Frankowski,&nbsp;Marek Konop","doi":"10.1002/mabi.202400145","DOIUrl":"10.1002/mabi.202400145","url":null,"abstract":"<p>Despite the significant progress in wound healing, chronic skin wounds remain a challenge for today's medicine. Due to the growing popularity of natural materials, silk protein-based dressings are gaining more attention in this field. Most studies refer to silk fibroin because sericin has been considered a waste product for years. However, sericin is also worth noting. Sericin-based dressings are mainly studied in cell cultures or animals. Sericin is the dressings’ main component or can be included in more complex, advanced biomaterials. Recent studies highlight sericin's important role, noting its biocompatibility, biodegradability, and beneficial effects in skin wound healing, such as antibacterial activity, antioxidant and anti-inflammatory effects, or angiogenic properties. Developing sericin-based biomaterials is often simple, free of toxic by-products, and inexpensive, requiring no highly sophisticated apparatus. As a result, sericin-based dressings can be widely used in wound healing and have low environmental impact. However, the literature in this area is further limited. The following review collects and describes recent studies showing silk sericin's influence on skin wound healing.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141788577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of Gelatin-Based Poly(Ester Urethane Urea) Electrospun Fibers Using Human Mesenchymal and Neural Stem Cells 使用人类间充质干细胞和神经干细胞评估明胶基聚(酯聚氨酯脲)电纺纤维。
IF 4.4 4区 医学
Macromolecular bioscience Pub Date : 2024-07-29 DOI: 10.1002/mabi.202400014
Tânia Vieira, Jorge Carvalho Silva, Sarka Kubinova, João P. Borges, Célia Henriques
{"title":"Evaluation of Gelatin-Based Poly(Ester Urethane Urea) Electrospun Fibers Using Human Mesenchymal and Neural Stem Cells","authors":"Tânia Vieira,&nbsp;Jorge Carvalho Silva,&nbsp;Sarka Kubinova,&nbsp;João P. Borges,&nbsp;Célia Henriques","doi":"10.1002/mabi.202400014","DOIUrl":"10.1002/mabi.202400014","url":null,"abstract":"<p>Previously, a new biodegradable poly(ester urethane urea) was synthesized based on polycaprolactone-diol and fish gelatin (PU-Gel). In this work, the potential of this new material for neural tissue engineering is evaluated. Membranes with randomly oriented fibers and with aligned fibers are produced using electrospinning and characterized regarding their mechanical behavior under both dry and wet conditions. Wet samples exhibit a lower Young's modulus than dry ones and aligned membranes are stiffer and more brittle than those randomly oriented. Cyclic tensile tests are conducted and high values for recovery ratio and resilience are obtained. Both membranes exhibited a hydrophobic surface, measured by the water contact angle (WCA). Human mesenchymal stem cells from umbilical cord tissue (UC-MSCs) and human neural stem cells (NSCs) are seeded on both types of membranes, which support their adhesion and proliferation. Cells stained for the cytoskeleton and nucleus in membranes with aligned fibers display an elongated morphology following the alignment direction. As the culture time increased, higher cell viability is obtained on randomfibers for UC-MSCs while no differences are observed for NSCs. The membranes support neuronal differentiation of NSCs, as evidenced by markers for a neuronal filament protein (NF70) and for a microtubule-associated protein (MAP2).</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141788575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Combinatorial Synthesis of Alkyl Chain-Capped Poly(β-Amino Ester)s for Effective siRNA Delivery 用于有效递送 siRNA 的烷基链封端聚(β-氨基酯)的组合合成。
IF 4.4 4区 医学
Macromolecular bioscience Pub Date : 2024-07-25 DOI: 10.1002/mabi.202400168
Baiqiu Chen, Qidi Ren, Pingge Jiang, Qiong Wu, Qi Shuai, Yunfeng Yan
{"title":"Combinatorial Synthesis of Alkyl Chain-Capped Poly(β-Amino Ester)s for Effective siRNA Delivery","authors":"Baiqiu Chen,&nbsp;Qidi Ren,&nbsp;Pingge Jiang,&nbsp;Qiong Wu,&nbsp;Qi Shuai,&nbsp;Yunfeng Yan","doi":"10.1002/mabi.202400168","DOIUrl":"10.1002/mabi.202400168","url":null,"abstract":"<p>Poly (β-amino ester) (PBAE) is a class of biodegradable polymers containing ester bonds in their main chain, extensively investigated as cationic polymer carriers for siRNA. Most current PBAE carriers rely on termination with hydrophilic or charged amines. In this study, a polymer platform consisting of 168 PBAE polymers with hydrophobic alkyl chain terminals is constructed through sequential aza-Michael addition. A large number of effective carriers are identified through in vitro screening of the PBAE platform for siLuc delivery to HeLa-Luc cells. Specifically, PA8-C6 and PA8-C8 achieve remarkable gene knockdown efficacies of up to 80% with low cytotoxicity. Certain materials from the PA2 and PA5 series demonstrate potent siRNA delivery capabilities associated with elevated cytotoxicity. The p<i>K</i>a value of PBAE is predominantly determined by the hydrophilic amine side chains rather than the end-capping groups. A p<i>K</i>a range of ≈6.2–6.5 may contribute to the excellent delivery capability for PA8 series carriers. The co-formulation of PBAE carriers with helper lipids leads to the reduced size and surface charges of the polyplex NPs with siRNA, consequently decreasing the cytotoxicity and enhancing siRNA delivery efficacy. These findings hold significant implications for the development of novel degradable polymer carriers for siRNA delivery.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141759637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of the Mechanical Strength and Cell Adhesion Capacity of POSS Doped PVA/CMC Hernia Patch 评估掺杂 POSS 的 PVA/CMC Hernia 修补片的机械强度和细胞粘附能力。
IF 4.4 4区 医学
Macromolecular bioscience Pub Date : 2024-07-25 DOI: 10.1002/mabi.202400095
Meryem Akkurt Yıldırım, Barkın ÖZER, Nelisa Türkoğlu, Cenk Denktaş
{"title":"Evaluation of the Mechanical Strength and Cell Adhesion Capacity of POSS Doped PVA/CMC Hernia Patch","authors":"Meryem Akkurt Yıldırım,&nbsp;Barkın ÖZER,&nbsp;Nelisa Türkoğlu,&nbsp;Cenk Denktaş","doi":"10.1002/mabi.202400095","DOIUrl":"10.1002/mabi.202400095","url":null,"abstract":"<p>Peritoneal adhesion typically occurs in applications such as abdominal, pelvic, and vascular surgery. It is necessary to develop a mechanical barrier to prevent adhesion. In this study, a novel biomaterial as a mechanical barrier is developed by combining polyvinyl alcohol (PVA) and carboxymethyl cellulose (CMC), doped with polyhedral oligomeric silsesquioxane (POSS) to prevent peritoneal adhesion. Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) methods reveal that POSS nanoparticles in the PVA matrix disrupted the intramolecular hydroxyl groups and structure of the crystal region. Electron microscopy (EM) images reveal that high concentrations of POSS (2 wt.%) cause irregular clustering in the composite matrix. As the concentration of POSS increases in the matrix, the degradation of the membranes increases, and protein adhesion decreases. In vitro cytotoxicity tests show a toxic effect on cells for PVA/CMC composite membranes, while on the other hand, the addition of POSS increases cell viability. According to the MMT test the POSS decreases cell adhesion of membranes. When comparing the POSS doped membrane to the undoped PVA/CMC membrane, an increase in the total antioxidant level and a decrease in the total oxidant level is observed.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mabi.202400095","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141759638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Boosting the Cell Harvesting Performance of Poly(di(ethylene glycol)methyl ether methacrylate) Cell Release Layers via Copolymerization of Photo- and Thermoresponsive Monomers. 通过光致和热致单体的共聚提高聚(二(乙二醇)甲基醚甲基丙烯酸酯)细胞释放层的细胞收集性能。
IF 4.4 4区 医学
Macromolecular bioscience Pub Date : 2024-07-25 DOI: 10.1002/mabi.202400249
Siyu Jiang, Sijia Yang, Wenwei Lei, Zhiwei Liu, Holger Schönherr
{"title":"Boosting the Cell Harvesting Performance of Poly(di(ethylene glycol)methyl ether methacrylate) Cell Release Layers via Copolymerization of Photo- and Thermoresponsive Monomers.","authors":"Siyu Jiang, Sijia Yang, Wenwei Lei, Zhiwei Liu, Holger Schönherr","doi":"10.1002/mabi.202400249","DOIUrl":"https://doi.org/10.1002/mabi.202400249","url":null,"abstract":"<p><p>The performance of the cell-selective thermoresponsive poly(di(ethylene glycol)methyl ether methacrylate) (PDEGMA) cell harvest system is shown to be drastically enhanced by exploiting the combination of photoresponsive spiropyran derivates and PDEGMA in copolymerized brushes. The analysis of copolymerized 1'-(2-methacryloxyethyl)-3',3'-dimethyl-6-nitrospiro(2H-1-benzopyran-2,2'-indoline) (SPMA) (DEMGA) di(ethylene glycol)methyl ether methacrylate brushes revealed that a minor adjustment of the SPMA/DEGMA ratios results in a significant alternation of wettability as well as protein adsorption, when switching the temperature from 37 to 22 °C and alternately irradiating using different light wavelengths (from 530 to 365 nm). Thin P(SPMA-co-DEGMA) layers supported pancreatic tumor PaTu 8988t cells with high cell viability. Copolymer layers with 2.5% SPMA/DEGMA led to the highest efficiency of enzyme-free cell release with very good cell viability. The release is induced by cooling the cell culture medium to 22 °C and irradiating the surface with 365 nm light. Compared to neat PDEGMA, the P(SPMA-co-DEGMA) layers showed a threefold increase in the speed of the change of cell morphology of the attached cells and a >5 times increased fraction of detached cells, which underlines the potential of these dual responsive PDEGMA systems for optimized performance in the facile capture, culture, and release of different cell lines.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141759636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study of Manipulative In Situ Pore-Formation upon Polymeric Coating on Cylindrical Substrate for Sustained Drug Delivery. 研究在圆柱形基底上涂覆聚合物后原位形成孔隙,以实现持续给药。
IF 4.4 4区 医学
Macromolecular bioscience Pub Date : 2024-07-22 DOI: 10.1002/mabi.202400273
Hao Wei, Ping Lin, Baozhang Shi, Liping Xu, Xiaoping Yang, Wei Sun
{"title":"Study of Manipulative In Situ Pore-Formation upon Polymeric Coating on Cylindrical Substrate for Sustained Drug Delivery.","authors":"Hao Wei, Ping Lin, Baozhang Shi, Liping Xu, Xiaoping Yang, Wei Sun","doi":"10.1002/mabi.202400273","DOIUrl":"https://doi.org/10.1002/mabi.202400273","url":null,"abstract":"<p><p>Herein, the micro-porous polylactic acid coating applied on the surface of the cylindrical substrate is fabricated by a novel in situ pore-formation strategy based on the combinational effect of breath figure (BF) and vapor-induced phase separation (VIPS) processes. Under the condition of high environmental humidity, solvent pair of chloroform and dimethylformamide is employed for post-treatment onto pre-formed PLA coating to induce the pore-formation following the mechanism of BF and VIPS, respectively. A composite porous structure with both cellular-like and bi-continuous network morphologies is obtained. By tunning the experimental factors including the ratio of the solvent pair, environmental humidity, and temperature, morphological manipulation upon the pore morphology can be facilely achieved based on the control of mechanism transition between BF and VIPS. Paclitaxel is used as a model drug and loaded into the porous coating by the wicking effect of post-immersion. Coatings with different morphological features show varying drug loading and release capacities. The 28-day release test reveals dynamic release profiles between different coating samples, with the total release rate ranging from 35.70% to 79.96%. Optimal loading capacity of 19.28 µg cm<sup>-2</sup> and 28-day release rate of 35.70% are achieved for the coating with composite BF-VIPS structure. This research established a cost-efficient strategy with high flexibility in the structural manipulation concerning the construction of drug-eluting coating with the feature of manipulative drug delivery.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141748528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unlocking the Potential: PEGylation and Molecular Weight Reduction of Ionenes for Enhanced Antifungal Activity and Biocompatibility 释放潜力:离子烯的 PEG 化和分子量降低可增强抗真菌活性和生物相容性。
IF 4.4 4区 医学
Macromolecular bioscience Pub Date : 2024-07-17 DOI: 10.1002/mabi.202400032
Jan M. Kurzyna, Rafał J. Kopiasz, Martyna Paul, Magdalena Flont, Patrycja Baranowska, Jolanta Mierzejewska, Karolina Drężek, Waldemar Tomaszewski, Elżbieta Jastrzębska, Dominik Jańczewski
{"title":"Unlocking the Potential: PEGylation and Molecular Weight Reduction of Ionenes for Enhanced Antifungal Activity and Biocompatibility","authors":"Jan M. Kurzyna,&nbsp;Rafał J. Kopiasz,&nbsp;Martyna Paul,&nbsp;Magdalena Flont,&nbsp;Patrycja Baranowska,&nbsp;Jolanta Mierzejewska,&nbsp;Karolina Drężek,&nbsp;Waldemar Tomaszewski,&nbsp;Elżbieta Jastrzębska,&nbsp;Dominik Jańczewski","doi":"10.1002/mabi.202400032","DOIUrl":"10.1002/mabi.202400032","url":null,"abstract":"<p>Numerous synthetic polymers, imitating natural antimicrobial peptides, have demonstrated potent antimicrobial activity, positioning them as potential candidates for new antimicrobial drugs. However, the high activity of these molecules often comes at the cost of elevated toxicity against eukaryotic organisms. In this study, a series of cationic ionenes with varying molecular weights to assess the influence of polymer chain length on ionene activity is investigated. To enhance polymer antimicrobial activity and limit toxicity a PEG side chain is introduced into the repeating unit. The resulting molecules consistently exhibited high activity against three model organisms: <i>E. coli</i>, <i>S. aureus</i> and <i>C. albicans</i>. The incorporation of side PEG chain improves antifungal properties and biocompatibility, regardless of molecular weight. The most important finding of this work is that the reduction of polymer molecular mass led to increased antifungal activity and reduced cytotoxicity against HMF and MRC-5 cell lines simultaneously. As a result, the best-performing molecules reported herein displayed minimal inhibitory concentrations (MIC) as low as 2 and 0.0625 µg mL<sup>1</sup> for <i>C. albicans</i> and <i>C. tropicalis</i> respectively, demonstrating exceptional selectivity. It is plausible that some of described herein molecules can serve as potential lead candidates for new antifungal drugs.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141633908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nitrilotriacetic Acid Functionalized Microgels for Efficient Immobilization of Hyaluronan Synthase 用于高效固定透明质酸合成酶的 Nitrilotriacetic Acid Functionalized Microgels。
IF 4.4 4区 医学
Macromolecular bioscience Pub Date : 2024-07-17 DOI: 10.1002/mabi.202400075
Isabel Katja Sommerfeld, Esther Maria Dälken, Lothar Elling, Andrij Pich
{"title":"Nitrilotriacetic Acid Functionalized Microgels for Efficient Immobilization of Hyaluronan Synthase","authors":"Isabel Katja Sommerfeld,&nbsp;Esther Maria Dälken,&nbsp;Lothar Elling,&nbsp;Andrij Pich","doi":"10.1002/mabi.202400075","DOIUrl":"10.1002/mabi.202400075","url":null,"abstract":"<p>Enzymes play a vital role in synthesizing complex biological molecules like hyaluronic acid (HA). Immobilizing enzymes on support materials is essential for their efficient use and reuse in multiple cycles. Microgels, composed of cross–linked, highly swollen polymer networks, are ideal for enzyme uptake owing to their high porosity. This study demonstrates the immobilization of His<sub>6</sub>-tagged hyaluronan synthase from <i>Pasteurella multocida</i> (<i>Pm</i>HAS) onto nitrilotriacetic acid functionalized microgels using different bivalent ions (Ni<sup>2+</sup>, Co<sup>2+</sup>, Mn<sup>2+</sup>, Mg<sup>2+</sup>, and Fe<sup>2+</sup>) via metal affinity binding. The results indicate that using Ni<sup>2+</sup> yields the microgels with the highest enzyme uptake and HA formation. The immobilized <i>Pm</i>HAS enables repetitive enzymatic production, producing high molecular weight HAs with decreasing dispersities in each step. Furthermore, the highest reported yield of HA with high molecular weight for immobilized <i>Pm</i>HAS is achieved. This system establishes a foundation for continuous HA formation, with future works potentially enhancing <i>Pm</i>HAS stability through protein engineering.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mabi.202400075","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141633907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vancomycin-Loaded Sol–Gel System for In Situ Coating of Artificial Bone to Prevent Surgical Site Infections 用于人工骨原位涂层的万古霉素载体溶胶凝胶系统,可预防手术部位感染。
IF 4.4 4区 医学
Macromolecular bioscience Pub Date : 2024-07-16 DOI: 10.1002/mabi.202400078
Xin Cui, Tian-Ci Wei, Lu-Ming Guo, Guo-Yang Xu, Kuo Zhang, Qing-Shi Zhang, Xiong Xu, Gui-Yuan Wang, Litao Li, Hong-Wen Liang, Lei Wang, Xu Cui
{"title":"Vancomycin-Loaded Sol–Gel System for In Situ Coating of Artificial Bone to Prevent Surgical Site Infections","authors":"Xin Cui,&nbsp;Tian-Ci Wei,&nbsp;Lu-Ming Guo,&nbsp;Guo-Yang Xu,&nbsp;Kuo Zhang,&nbsp;Qing-Shi Zhang,&nbsp;Xiong Xu,&nbsp;Gui-Yuan Wang,&nbsp;Litao Li,&nbsp;Hong-Wen Liang,&nbsp;Lei Wang,&nbsp;Xu Cui","doi":"10.1002/mabi.202400078","DOIUrl":"10.1002/mabi.202400078","url":null,"abstract":"<p>Surgical site infections (SSIs) related to implants have always been a major challenge for clinical doctors and patients. Clinically, doctors may directly apply antibiotics into the wound to prevent SSIs. However, this strategy is strongly associated with experience of doctors on the amount and the location of antibiotics. Herein, an in situ constructable sol–gel system is developed containing antibiotics during surgical process and validated the efficacy against SSIs in beagles. The system involves chitosan (CS), β-glycerophosphate (β-GP) and vancomycin (VAN), which can be adsorbed onto porous hydroxyapatite (HA) and form VAN-CS/β-GP@HA hydrogel in a short time. The VAN concentration from VAN-CS/β-GP@HA hydrogel is higher than minimum inhibitory concentration (MIC) against <i>Staphylococcus aureus</i> (<i>S. aureus</i>) at the 21st day in vitro. In an in vivo canine model for the prevention of SSIs in the femoral condyle, VAN-CS/β-GP@HA exhibits excellent biocompatibility, antimicrobial properties, and promotion of bone healing. In all, the CS/β-GP instant sol–gel system is able to in situ encapsulate antibiotics and adhere on artificial bone implants during the surgery, effectively preventing SSIs related to implants.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141620308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信