Stanislaw Mitew, Ling Yun Yeow, Chi Long Ho, Prakash K N Bhanu, Oliver James Nickalls
{"title":"PyFaceWipe: a new defacing tool for almost any MRI contrast.","authors":"Stanislaw Mitew, Ling Yun Yeow, Chi Long Ho, Prakash K N Bhanu, Oliver James Nickalls","doi":"10.1007/s10334-024-01170-x","DOIUrl":"10.1007/s10334-024-01170-x","url":null,"abstract":"<p><strong>Rationale and objectives: </strong>Defacing research MRI brain scans is often a mandatory step. With current defacing software, there are issues with Windows compatibility and researcher doubt regarding the adequacy of preservation of brain voxels in non-T1w scans. To address this, we developed PyFaceWipe, a multiplatform software for multiple MRI contrasts, which was evaluated based on its anonymisation ability and effect on downstream processing.</p><p><strong>Materials and methods: </strong>Multiple MRI brain scan contrasts from the OASIS-3 dataset were defaced with PyFaceWipe and PyDeface and manually assessed for brain voxel preservation, remnant facial features and effect on automated face detection. Original and PyFaceWipe-defaced data from locally acquired T1w structural scans underwent volumetry with FastSurfer and brain atlas generation with ANTS.</p><p><strong>Results: </strong>214 MRI scans of several contrasts from OASIS-3 were successfully processed with both PyFaceWipe and PyDeface. PyFaceWipe maintained complete brain voxel preservation in all tested contrasts except ASL (45%) and DWI (90%), and PyDeface in all tested contrasts except ASL (95%), BOLD (25%), DWI (40%) and T2* (25%). Manual review of PyFaceWipe showed no failures of facial feature removal. Pinna removal was less successful (6% of T1 scans showed residual complete pinna). PyDeface achieved 5.1% failure rate. Automated detection found no faces in PyFaceWipe-defaced scans, 19 faces in PyDeface scans compared with 78 from the 224 original scans. Brain atlas generation showed no significant difference between atlases created from original and defaced data in both young adulthood and late elderly cohorts. Structural volumetry dice scores were ≥ 0.98 for all structures except for grey matter which had 0.93. PyFaceWipe output was identical across the tested operating systems.</p><p><strong>Conclusion: </strong>PyFaceWipe is a promising multiplatform defacing tool, demonstrating excellent brain voxel preservation and competitive defacing in multiple MRI contrasts, performing favourably against PyDeface. ASL, BOLD, DWI and T2* scans did not produce recognisable 3D renders and hence should not require defacing. Structural volumetry dice scores (≥ 0.98) were higher than previously published FreeSurfer results, except for grey matter which were comparable. The effect is measurable and care should be exercised during studies. ANTS atlas creation showed no significant effect from PyFaceWipe defacing.</p>","PeriodicalId":18067,"journal":{"name":"Magnetic Resonance Materials in Physics, Biology and Medicine","volume":" ","pages":"993-1003"},"PeriodicalIF":2.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141432260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Oscar Jalnefjord, Louise Rosenqvist, Amina Warsame, Isabella M Björkman-Burtscher
{"title":"Signal drift in diffusion MRI of the brain: effects on intravoxel incoherent motion parameter estimates.","authors":"Oscar Jalnefjord, Louise Rosenqvist, Amina Warsame, Isabella M Björkman-Burtscher","doi":"10.1007/s10334-024-01183-6","DOIUrl":"10.1007/s10334-024-01183-6","url":null,"abstract":"<p><strong>Objectives: </strong>Signal drift has been put forward as one of the fundamental confounding factors in diffusion MRI (dMRI) of the brain. This study characterizes signal drift in dMRI of the brain, evaluates correction methods, and exemplifies its impact on parameter estimation for three intravoxel incoherent motion (IVIM) protocols.</p><p><strong>Materials and methods: </strong>dMRI of the brain was acquired in ten healthy subjects using protocols designed to enable retrospective characterization and correction of signal drift. All scans were acquired twice for repeatability analysis. Three temporal polynomial correction methods were evaluated: (1) global, (2) voxelwise, and (3) spatiotemporal. Effects of acquisition order were simulated using estimated drift fields.</p><p><strong>Results: </strong>Signal drift was around 2% per 5 min in the brain as a whole, but reached above 5% per 5 min in the frontal regions. Only correction methods taking spatially varying signal drift into account could achieve effective corrections. Altered acquisition order introduced both systematic changes and differences in repeatability in the presence of signal drift.</p><p><strong>Discussion: </strong>Signal drift in dMRI of the brain was found to be spatially varying, calling for correction methods taking this into account. Without proper corrections, choice of protocol can affect dMRI parameter estimates and their repeatability.</p>","PeriodicalId":18067,"journal":{"name":"Magnetic Resonance Materials in Physics, Biology and Medicine","volume":" ","pages":"1005-1019"},"PeriodicalIF":2.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11582154/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141603864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Santhosh Iyyakkunnel, Matthias Weigel, Oliver Bieri
{"title":"Fast bias-corrected conductivity mapping using stimulated echoes.","authors":"Santhosh Iyyakkunnel, Matthias Weigel, Oliver Bieri","doi":"10.1007/s10334-024-01194-3","DOIUrl":"10.1007/s10334-024-01194-3","url":null,"abstract":"<p><strong>Objective: </strong>To demonstrate the potential of a double angle stimulated echo (DA-STE) method for fast and accurate \"full\" homogeneous Helmholtz-based electrical properties tomography using a simultaneous <math><msubsup><mi>B</mi> <mrow><mn>1</mn></mrow> <mo>+</mo></msubsup> </math> magnitude and transceive phase measurement.</p><p><strong>Methods: </strong>The combination of a spin and stimulated echo can be used to yield an estimate of both <math><msubsup><mi>B</mi> <mrow><mn>1</mn></mrow> <mo>+</mo></msubsup> </math> magnitude and transceive phase and thus provides the means for \"full\" EPT reconstruction. An interleaved 2D acquisition scheme is used for rapid acquisition. The method was validated in a saline phantom and compared to a double angle method based on two single gradient echo acquisitions (GRE-DAM). The method was evaluated in the brain of a healthy volunteer.</p><p><strong>Results: </strong>The <math><msubsup><mi>B</mi> <mrow><mn>1</mn></mrow> <mo>+</mo></msubsup> </math> magnitude obtained with DA-STE showed excellent agreement with the GRE-DAM method. Conductivity values based on the \"full\" EPT reconstruction also agreed well with the expectations in the saline phantom. In the brain, the method delivered conductivity values close to literature values.</p><p><strong>Discussion: </strong>The method allows the use of the \"full\" Helmholtz-based EPT reconstruction without the need for additional measurements. As a result, quantitative conductivity values are improved compared to phase-based EPT reconstructions. DA-STE is a fast complex- <math><msubsup><mi>B</mi> <mrow><mn>1</mn></mrow> <mo>+</mo></msubsup> </math> mapping technique that could render EPT clinically relevant at 3 T.</p>","PeriodicalId":18067,"journal":{"name":"Magnetic Resonance Materials in Physics, Biology and Medicine","volume":" ","pages":"1047-1057"},"PeriodicalIF":2.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11582100/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141893772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quantitative MRI methods for the assessment of structure, composition, and function of musculoskeletal tissues in basic research and preclinical applications.","authors":"Victor Casula, Abdul Wahed Kajabi","doi":"10.1007/s10334-024-01174-7","DOIUrl":"10.1007/s10334-024-01174-7","url":null,"abstract":"<p><p>Osteoarthritis (OA) is a disabling chronic disease involving the gradual degradation of joint structures causing pain and dysfunction. Magnetic resonance imaging (MRI) has been widely used as a non-invasive tool for assessing OA-related changes. While anatomical MRI is limited to the morphological assessment of the joint structures, quantitative MRI (qMRI) allows for the measurement of biophysical properties of the tissues at the molecular level. Quantitative MRI techniques have been employed to characterize tissues' structural integrity, biochemical content, and mechanical properties. Their applications extend to studying degenerative alterations, early OA detection, and evaluating therapeutic intervention. This article is a review of qMRI techniques for musculoskeletal tissue evaluation, with a particular emphasis on articular cartilage. The goal is to describe the underlying mechanism and primary limitations of the qMRI parameters, their association with the tissue physiological properties and their potential in detecting tissue degeneration leading to the development of OA with a primary focus on basic and preclinical research studies. Additionally, the review highlights some clinical applications of qMRI, discussing the role of texture-based radiomics and machine learning in advancing OA research.</p>","PeriodicalId":18067,"journal":{"name":"Magnetic Resonance Materials in Physics, Biology and Medicine","volume":" ","pages":"949-967"},"PeriodicalIF":2.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11582218/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141432229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mehdi Panahi, Maliheh Habibi, Mahboube Sadat Hosseini
{"title":"Enhancing MRI radiomics feature reproducibility and classification performance in Parkinson's disease: a harmonization approach to gray-level discretization variability.","authors":"Mehdi Panahi, Maliheh Habibi, Mahboube Sadat Hosseini","doi":"10.1007/s10334-024-01215-1","DOIUrl":"https://doi.org/10.1007/s10334-024-01215-1","url":null,"abstract":"<p><strong>Objective: </strong>This study aimed to assess the reproducibility of MRI-derived radiomic features across multiple gray-level discretization levels for classifying Parkinson's disease (PD) subtypes, and to evaluate the impact of ComBat harmonization on feature stability and machine learning performance.</p><p><strong>Methods: </strong>T1-weighted MRI scans from 140 PD patients (70 tremor-dominant, 70 postural instability gait difficulty) and 70 healthy controls were obtained from the Parkinson's progression markers initiative (PPMI) database. Radiomic features were extracted from 16 brain regions using 6 discretization levels (8, 16, 32, 64, 128, and 256 bins). ComBat harmonization was applied using a combined batch variable incorporating both scanner models and discretization levels. Intraclass correlation coefficients (ICC) and Kruskal-Wallis tests assessed feature reproducibility before and after harmonization. Support vector machine classifiers were used for PD subtype classification.</p><p><strong>Results: </strong>ComBat harmonization significantly improved feature reproducibility across all feature groups. The percentage of features showing excellent robustness (ICC ≥ 0.90) increased substantially after harmonization. The proportion of features significantly affected by discretization levels was reduced following harmonization. Classification accuracy improved dramatically, from a range of 0.42-0.49 before harmonization to 0.86-0.96 after harmonization across most discretization levels. AUC values similarly increased from 0.60-0.67 to 0.93-0.99 after harmonization.</p><p><strong>Conclusions: </strong>ComBat harmonization significantly enhanced the reproducibility of radiomic features across discretization levels and improved PD subtype classification performance. This study highlights the importance of harmonization in radiomics research for PD and suggests potential clinical applications in personalized treatment planning.</p>","PeriodicalId":18067,"journal":{"name":"Magnetic Resonance Materials in Physics, Biology and Medicine","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142739731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design of multi-row parallel-transmit coil arrays for enhanced SAR efficiency with deep brain electrodes at 3T: an electromagnetic simulation study.","authors":"Nejat Karadeniz, Joseph V Hajnal, Özlem Ipek","doi":"10.1007/s10334-024-01212-4","DOIUrl":"https://doi.org/10.1007/s10334-024-01212-4","url":null,"abstract":"<p><strong>Objective: </strong>Tissue heating near the implanted deep brain stimulation (DBS) during magnetic resonance imaging (MRI) poses a significant safety constraint. This study aimed to evaluate the performance of parallel transmit (pTx) head transmit radiofrequency (RF) coils in DBS patients, with a focus on excitation fidelity under specific absorption rate (SAR) control for brain imaging at 3T MRI.</p><p><strong>Materials and methods: </strong>We employed electromagnetic simulations to assess different coil configurations, including multi-row pTx coils of 16-24 channels arranged in 1, 2, and 3 rows, and compared these to a circularly polarised and pTx birdcage coil using a realistic human model without and with DBS leads and electrodes.</p><p><strong>Results: </strong>Two- and three-row pTx coils with overlapping loop elements exhibited similar performance, which was superior in excitation homogeneity and local SAR compared to the single-row coil and the birdcage coil both without and with DBS.</p><p><strong>Discussion: </strong>These findings suggest that multi-row coils can enhance the safety and efficacy of MRI in patients with DBS devices, so potentially improving imaging performance in this expanding patient population. There was a minimal difference in performance between the 2 and 3-row coils, favouring the simpler, lower channel count design for practical implementation.</p>","PeriodicalId":18067,"journal":{"name":"Magnetic Resonance Materials in Physics, Biology and Medicine","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142623018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Morphology of the human inner ear and vestibulocochlear nerve assessed using 7 T MRI.","authors":"Kingkarn Aphiwatthanasumet, Ketan Jethwa, Paul Glover, Gerard O'Donoghue, Dorothee Auer, Penny Gowland","doi":"10.1007/s10334-024-01213-3","DOIUrl":"https://doi.org/10.1007/s10334-024-01213-3","url":null,"abstract":"<p><strong>Objective: </strong>To optimize high-resolution 7 T MRI of the cochlea and measure normal cochlea and the cochlear nerve morphometry in vivo.</p><p><strong>Materials and methods: </strong>Eight volunteers with normal hearing were scanned at 7 T using an optimized protocol. Two neuroradiologists independently scored image quality. The basal turn lumen diameter (BTLD), height, width, length and volume of the cochlear, long (LD) and short (SD) diameter the calculated cross-sectional area (CSA) of the cochlear nerve were measured. Intra and inter-observer reliability was assessed using intraclass correlation (ICC).</p><p><strong>Results: </strong>3D T2W DRIVE combined with dielectric pads, allowed acquisition of high-resolution images showing detailed structures, such as the crista ampullaris in the semicircular canals. The overall grading scores from neuroradiologists were excellent. In the left ear, averaging over all subjects gave BTLD of 2.6 ± 0.05 mm, height of 4.9 ± 0.1 mm, width of 4.4 ± 0.2 mm, length of 36.5 ± 0.4 mm, volume of 0.16 ± 0.02 ml, LD of 1.31 ± 0.1 mm, SD of 1.06 ± 0.1 mm, and CSA of 1.1 ± 0.1 mm<sup>2</sup>. The right ear gave BTLD of 2.6 ± 0.04 mm, height of 4.9 ± 0.1 mm, width of 4.4 ± 0.3 mm, length of 35.5 ± 0.4 mm, volume of 0.16 ± 0.02 ml, LD of 1.29 ± 0.1 mm, SD of 1.07 ± 0.1 mm, and CSA of 1.10 ± 0.2 mm<sup>2</sup>. No statistically significant difference was found between the sides of the head (p-value > 0.05). The intra-observer reliability was high (0.77-0.94), while the inter-observer reliability varied from moderate to high (0.55-0.81).</p><p><strong>Conclusion: </strong>7 T MRI can provide excellent visualization of the internal structure of the cochlear and of the vestibulocochlear nerve in vivo.</p>","PeriodicalId":18067,"journal":{"name":"Magnetic Resonance Materials in Physics, Biology and Medicine","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142623021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andrew Dupuis, Yong Chen, Kelvin Chow, Mark A Griswold, Rasim Boyacioglu
{"title":"Repeatability of 3D MR fingerprinting during scanner software upgrades.","authors":"Andrew Dupuis, Yong Chen, Kelvin Chow, Mark A Griswold, Rasim Boyacioglu","doi":"10.1007/s10334-024-01211-5","DOIUrl":"https://doi.org/10.1007/s10334-024-01211-5","url":null,"abstract":"<p><strong>Objective: </strong>This study aims to quantify the repeatability of a 3D Magnetic Resonance Fingerprinting (MRF) research protocol in the context of a scanner software upgrade. All of MRI assumes consistent hardware performance and raw data pre-processing on the acquisition side. Software upgrades can affect hardware specifications and reconstruction chain parameters. Understanding how vendor-provided software upgrades vary MRF-derived T1 and T2 values is crucial for its application in different settings.</p><p><strong>Materials and methods: </strong>Eight healthy volunteers were imaged with an in-house developed 3D MRF pulse sequence using a 3T scanner before and after a software upgrade (VA31A to VA50A, MAGNETOM Vida, Siemens Healthineers). Online MRF reconstruction using Singular Value Decomposition (SVD) timeseries compression and B1+ correction was performed. The study involved test-retest repeatability assessment and a comparison of pre- and post-upgrade data based on automatically extracted T1 and T2 values from MNI-152 Harvard-Oxford Subcortical Structural Atlas regions.</p><p><strong>Results: </strong>Significant mismatches were found directly after the upgrade. However, after an information exchange with the vendor, the 3D-MRF sequence showed consistent repeatability in both intra-version test-retest scenarios and cross-version comparisons: <math><mo>-</mo></math> 1.16 ± 3.18% variability in T1 and <math><mo>-</mo></math> 0.54 ± 4.84% in T2 for intra-version tests, and <math><mo>-</mo></math> 0.83 ± 3.68% (T1) and <math><mo>-</mo></math> 0.05 ± 5.81% (T2) variability for cross-version comparisons.</p><p><strong>Discussion: </strong>The study shows the reliable performance of 3D MRF protocols across software upgrades is possible, but it also highlights the importance of detailed evaluation and vendor collaboration in ensuring consistency. These findings support the application of MRF in longitudinal studies and emphasize the need for systematic assessments following hardware or software modifications.</p>","PeriodicalId":18067,"journal":{"name":"Magnetic Resonance Materials in Physics, Biology and Medicine","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142582898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Luis Carlos Sanmiguel-Serpa, Pieter de Visschere, Pim Pullens
{"title":"Concentric-object and equiangular-object methods to perform standardized regional analysis in renal mpMRI.","authors":"Luis Carlos Sanmiguel-Serpa, Pieter de Visschere, Pim Pullens","doi":"10.1007/s10334-024-01208-0","DOIUrl":"https://doi.org/10.1007/s10334-024-01208-0","url":null,"abstract":"<p><strong>Objective: </strong>Renal multiparametric magnetic resonance imaging (mpMRI) sequences, including T<sub>1</sub>-T<sub>2</sub> mapping, Blood oxygenation level-dependent (BOLD), Renal blood flow (RBF), and Apparent Diffusion Coefficient (ADC) from diffusion-weighted imaging (DWI), provide insights into kidney function. However, consensus on selecting regions of interest (ROIs) is lacking. This study aims to describe and compare the Concentric Objects (CO) and Equiangular Objects (EO) methods for standardized ROI selection and assess their efficacy in capturing regional variations in renal MRI parameters.</p><p><strong>Materials and methods: </strong>Twelve healthy volunteers underwent mpMRI renal scans. ROIs were selected manually and by applying the CO and EO algorithms to each mpMRI sequence. The methods were tested across various subregion configurations. Regional differences in renal MRI parameters were evaluated.</p><p><strong>Results: </strong>CO and EO methods demonstrated statistically significant differences in mpMRI parameters across renal regions. ASL-RBF, BOLD-MRI, and T<sub>2</sub>-map results indicated substantial variations from the lower to upper kidney areas.</p><p><strong>Discussion: </strong>This study implemented CO and EO algorithms in renal mpMRI, showing their potential for evaluating cortico-medullary and cranio-caudal profiles. The findings validate the CO method for BOLD and ADC measurements and presented ASL-RBF and T<sub>1</sub>-T<sub>2</sub> map profiles. The EO method's utility needs further validation with renal patients.</p>","PeriodicalId":18067,"journal":{"name":"Magnetic Resonance Materials in Physics, Biology and Medicine","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142469069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Signal-to-noise trade-offs between magnet diameter and shield-to-coil distance for cylindrical Halbach-based portable MRI systems for neuroimaging.","authors":"Javad Parsa, Andrew Webb","doi":"10.1007/s10334-024-01210-6","DOIUrl":"https://doi.org/10.1007/s10334-024-01210-6","url":null,"abstract":"<p><strong>Objective: </strong>To investigate the trade-off between magnet bore diameter and the distance between the conductive Faraday shield and RF head coil for low-field point-of-care neuroimaging systems.</p><p><strong>Methods: </strong>Electromagnetic simulations were performed for three different Faraday shield geometries and two commonly used RF coil designs (spiral and solenoid) to assess the effects of a close-fitting shield on the RF coil's transmit and receive efficiencies. Experimental measurements were performed to confirm the accuracy of the simulations. Parallel simulations were performed to assess the static magnet ( <math><msub><mi>B</mi> <mn>0</mn></msub> </math> ) field as a function of the magnet bore diameter. The obtainable SNR was then calculated as a function of these two related variables.</p><p><strong>Results: </strong>Simulations of the RF coil characteristics and <math><msubsup><mi>B</mi> <mrow><mn>1</mn></mrow> <mo>+</mo></msubsup> </math> transmit efficiencies agreed well with corresponding experimentally determined parameters. Overall, the RF coil transmit efficiency was, as expected, higher when the gap between the shield and coil increased. The calculated intrinsic SNR showed that maximum SNR would be obtained for a cylindrical shield of diameter 310 mm with an inner diameter of the magnet of 320 mm (assuming 10 mm for the gradient coils).</p><p><strong>Conclusion: </strong>This work presents an overview of the trade-offs in transmit efficiencies for RF coils used for POC MRI neuroimaging as a function of coil-to-shield distance and inner diameter of the Halbach magnet. Results show that there is a relatively shallow optimum between a magnet diameter of 290 and 330 mm, with values falling more than 10% if either smaller or larger magnets are used.</p>","PeriodicalId":18067,"journal":{"name":"Magnetic Resonance Materials in Physics, Biology and Medicine","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142469072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}