{"title":"Estimation of Pile Shaft Friction in Expansive Soil upon Water Infiltration","authors":"Waleed Awadalseed, Xingli Zhang, Dashuai Zhang, Yupeng Ji, Yuntian Bai, Honghua Zhao","doi":"10.1007/s12205-024-1478-5","DOIUrl":"https://doi.org/10.1007/s12205-024-1478-5","url":null,"abstract":"<p>This study addresses the critical role of shaft friction of pile in the interaction with expansive soil under varying moisture content. A simplified estimation method is proposed, capturing the non-linear correlation between the interface relative displacement between the soil and pile and unit skin friction and during water infiltration. The approach integrates soil-pile displacement, interface shear strength parameters, and soil matric suction fluctuations. Tests on Nanyang expansive soil include a laboratory model with water infiltration, constant volume swelling, direct shear for interface shear strength, and a filter paper method for SWCC determination. Initial water content of 21% shows an increases swelling pressure more than 24% and 27%. Increasing soil water content reduces soil matric suction. Due to lower soil matric suction, cohesion, friction, and soil interface shear strength decreased. After the passage of the infiltration duration (specifically, 200 hours), ground heave peaks at 10.7 mm, potentially affecting pile axial forces. As matric suction diminishes, the pile’s shaft friction reduces, transferring more weight to the pile base, leading to settlements. Experimental data validate the proposed shaft friction estimation method. The approach aligns with previous studies and laboratory models, providing a comprehensive understanding of soil-pile interaction in changing moisture conditions.</p>","PeriodicalId":17897,"journal":{"name":"KSCE Journal of Civil Engineering","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141776737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhai-nan Zhang, Ke Yang, Xin Lyu, Xiao-lou Chi, Wenjie Liu
{"title":"Experimental Study on the Characteristics of Energy Accumulation before Peak in Coal Rock Combinations with Different Dip Angles","authors":"Zhai-nan Zhang, Ke Yang, Xin Lyu, Xiao-lou Chi, Wenjie Liu","doi":"10.1007/s12205-024-1497-2","DOIUrl":"https://doi.org/10.1007/s12205-024-1497-2","url":null,"abstract":"<p>The influence of water content and dip angle conditions on the pre peak energy accumulation characteristics of coal rock assemblages and their mechanism of action are crucial for studying the stability of high dip angle coal seams. The results indicate that water content changes the peak strength turning point. The accumulated energy before the peak gradually decreases from 0° to 60° and increases at 60° to 90°. As the inclination angle of the interface increases, the pre peak energy accumulation decreases. As the water content increases, the proportion of coal components gradually increases, while the proportion of rock components gradually decreases, and the energy accumulated before the peak of coal components is greater than that of rock components. The energy reduction rate gradually increases from 0° to 60° and decreases from 60° to 90°. When the inclination angle of the interface is 0° ∼ 30°, 30° ∼ 60°, and 90°, the main mechanism affecting its stability is the combined effect of water weakening, water weakening, and interface slip, as well as the uneven deformation of the coal rock interface.</p>","PeriodicalId":17897,"journal":{"name":"KSCE Journal of Civil Engineering","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141745658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rong Guo, Yue Li, Shaowei Zhao, Qin Wang, Shigang Luo
{"title":"Research on the CFRP-Concrete Interface Model under Fatigue Loading","authors":"Rong Guo, Yue Li, Shaowei Zhao, Qin Wang, Shigang Luo","doi":"10.1007/s12205-024-1354-3","DOIUrl":"https://doi.org/10.1007/s12205-024-1354-3","url":null,"abstract":"<p>To investigate the degradation mechanism of the performance of CFRP-concrete bonded interface under fatigue loading, double shear tests with the adhesive layer thickness and stress level as the variables were conducted. The results indicate that under fatigue loading, varying thicknesses of the interface adhesive layer result in different interface failure modes. The strain variations of the CFRP fabric in static and fatigue tests exhibited similar trends, with an increase in bonding thickness leading to higher ultimate load or fatigue cycles. With an increase in the thickness of the adhesive layer, the initial stiffness of the interface decreases, leading to improved deformation performance of the interface. During the second stage of damage development, a thicker adhesive layer led to slower interface damage progression. Under fatigue loading, when the specimen is in the stable crack propagation stage at the interface, a decrease in the load level and an increase in the thickness of the adhesive layer lead to a reduction in the rate of crack propagation. The proposed crack propagation rate model effectively predicted the interface crack propagation process and fatigue life. Finally, the damage and failure process of the interface under fatigue loading was simulated using Fe-safe software, and predictions for its fatigue life were made.</p>","PeriodicalId":17897,"journal":{"name":"KSCE Journal of Civil Engineering","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141745662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jun He, Sihao Long, Yuanjun Zhu, Shiru Luo, Wenjing Li
{"title":"Strength Development and Erosive Deterioration of Solidified Soil Exposed to Salty Soil","authors":"Jun He, Sihao Long, Yuanjun Zhu, Shiru Luo, Wenjing Li","doi":"10.1007/s12205-024-2557-3","DOIUrl":"https://doi.org/10.1007/s12205-024-2557-3","url":null,"abstract":"<p>To reveal the impact of erosion environment and age on the strength and deterioration of solidified soil exposed to salty soil, two types of solidified soil, soda residue-ground granulated blast furnace slag-carbide slag solidified soil (S20G10) and cement solidified soil (C10), were eroded by salty soil prepared with kaolin mixed with Na<sub>2</sub>SO<sub>4</sub>, MgSO<sub>4</sub> or seawater. The unconfined compressive strength tests, X-ray diffraction and scanning electron microscopy analysis were conducted. The results showed that 1% MgSO<sub>4</sub> erosion resulted in the most significant reduction in strength. After 28 days of erosion, the strength was approximately 66% to 68% of the standard curing sample. The strength initially increased and then decreased with the erosion age. Numerous needle-like ettringite or thamuasite were generated in the samples, which led to a loose microstructure and decrease in strength. Sample S20G10 showed stronger erosion resistance than sample C10. The bearing capacity of solidified soil exposed to MgSO<sub>4</sub> erosion exhibited an initial increase followed by a decrease with erosion age. When considering erosion deterioration for 50 years, it was necessary to increase the pile diameter by 1.1 to 1.7 times if the bearing capacity of the mixing pile was equal to the allowable bearing capacity.</p>","PeriodicalId":17897,"journal":{"name":"KSCE Journal of Civil Engineering","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141745659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Riverbank Erosion and Vulnerability Assessment for the Alluvial Section of Barak River in North-East India by In-situ Approach","authors":"Tinkle Das, Briti Sundar Sil, Kumar Ashwini","doi":"10.1007/s12205-024-0523-8","DOIUrl":"https://doi.org/10.1007/s12205-024-0523-8","url":null,"abstract":"<p>Riverbank erosion is a significant and distinct problem in the floodplains of alluvial rivers in North East India. The Barak River has experienced an alarming increase in bank erosion rate over the last few decades, resulting in embankment breaches and biodiversity loss, but there is a dearth of field studies to evaluate riverbank fluvial erosion. This study aims to assess the river bank erosion and Vulnerability Assessment of the Barak River in India using an in-situ submerged Jet Erosion Test (JET). The riverbank erosion was estimated for a span of the riverbank on one side of the stream using the excess shear stress equation and impinging jet theory. Data was collected using a JET along the riverbank to determine the erodibility parameter of the bank soil. The results show that the spatial variation in erosion parameters of river banks varies significantly, which is dependent on the specific location. Annual bank erosion was computed using measured erodibility parameters and stage record data, which shows the bank erosion of the Barak River will occur in many places, particularly at the critical area. The measured bank erosion was compared with the observed satellite imagery map for the 2000–2020. This study shows that JET results should be used with caution; further, the findings can be helpful in planning river training and management strategies for vulnerable areas and may serve as a model for similar alluvial river studies.</p>","PeriodicalId":17897,"journal":{"name":"KSCE Journal of Civil Engineering","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141745661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Seismic Analysis of Structure with Self-centering Variable Friction Brace Based on Spectral Method","authors":"Qingguang He, Boyi Zhao","doi":"10.1007/s12205-024-2298-3","DOIUrl":"https://doi.org/10.1007/s12205-024-2298-3","url":null,"abstract":"<p>The seismic response of structures is pivotal in ensuring their safety and resilience against earthquakes. While traditional methods rely on elastic response spectrum to predict seismic behavior, accurately estimating the elastic-plastic response, particularly in structures equipped with intricate dissipative devices, remains challenging. This paper explores a novel self-centering variable friction energy dissipation brace (SCVFB) system that addresses this challenge. Through finite element analysis, the elastic-plastic displacement response spectrum and the strength discount factor spectrum are obtained. By subjecting a five-story frame with SCVFBs to seismic testing through elastic-plastic time-history analyses, a comparison of the results with those predicted by spectral methods is conducted. Remarkably, the results from both approaches are closely aligned, confirming that the seismic response of structures equipped with SCVFBs, as evaluated via spectral methods, offers valuable insights for structural design.</p>","PeriodicalId":17897,"journal":{"name":"KSCE Journal of Civil Engineering","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141745660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kun Yan, Zhixiong Yi, Qi Li, Gang Liu, Chaoyue Jiang, Lu Wang
{"title":"Analysis of Strain Transfer Efficiency Coefficient of a Novel High-strength Steel Wire FBG Sensor","authors":"Kun Yan, Zhixiong Yi, Qi Li, Gang Liu, Chaoyue Jiang, Lu Wang","doi":"10.1007/s12205-024-1319-6","DOIUrl":"https://doi.org/10.1007/s12205-024-1319-6","url":null,"abstract":"<p>Accurately measuring cable forces is crucial for reliable bridge condition evaluation, yet it remains a challenging task. This study proposes the use of a High-strength Steel Wire Fiber Bragg Grating (HSW-FBG) sensor embedded in commonly-used cables composed of 5–7 mm parallel steel wires. The HSW-FBG sensor facilitates direct strain measurement, offering a simple and user-friendly packaging process for high-precision monitoring throughout the cable’s lifespan. The results demonstrate excellent linearity and repeatability in strain detection of the HSW-FBG sensor. The length of the packaging layer has the most significant impact on the strain transfer efficiency (STE) coefficient and should be at least 60 mm required for optimal performance. Additionally, the elastic modulus of the packaging layer moderately affects the STE coefficient. Adhering to these packaging parameter requirements ensures that the STE coefficient of the HSW-FBG sensor is very close to 1, enabling for high-precision measurement without correction. A systematic analysis of the STE coefficient of the HSW-FBG sensor is conducted, determining reasonable values for the packaging parameters. These findings lay the groundwork for future engineering applications, facilitating accurate measurement of cable forces in practical scenarios.</p>","PeriodicalId":17897,"journal":{"name":"KSCE Journal of Civil Engineering","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141614820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kibeom Kwon, Hangseok Choi, Khanh Pham, Sangwoo Kim, Abraham Bae
{"title":"Influence Analysis of Pavement Distress on International Roughness Index Using Machine Learning","authors":"Kibeom Kwon, Hangseok Choi, Khanh Pham, Sangwoo Kim, Abraham Bae","doi":"10.1007/s12205-024-0093-9","DOIUrl":"https://doi.org/10.1007/s12205-024-0093-9","url":null,"abstract":"<p>The International Roughness Index (IRI) is closely related to pavement distress. However, previous studies employing statistics and machine learning approaches would present challenges in comprehensively analyzing the influence of pavement distress on IRI considering their severities. This study introduces interpretable machine learning to investigate the influence of pavement distress on IRI, with a particular focus on the severity of pavement distress. The pavement distress and IRI data for flexible pavements obtained from the long-term pavement performance (LTPP) program were meticulously preprocessed. The developed random forest (RF) model demonstrated satisfactory predictive performance, with an RMSE of 0.2191 and an R<sup>2</sup> of 0.7874. The relationship between pavement distress and IRI, as captured by the developed model, was further analyzed using the SHapley Additive exPlanations (SHAP) method. The model interpretation identified the transverse crack, rutting, and alligator crack as the key factors influencing IRI. Notably, both transverse and alligator cracks exhibited significant contributions to IRI increment at medium and high severity levels, highlighting the importance of proactive maintenance for these distress types at lower severity levels. Additionally, a threshold in rutting depth was observed, which could increase IRI. A comparative analysis with the AASHTO MEPDG smoothness model demonstrated that the predictive performance of the RF model was notably superior.</p>","PeriodicalId":17897,"journal":{"name":"KSCE Journal of Civil Engineering","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141612202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Song Zhang, Xiao-min Zhou, Tiecheng Sun, Jiwei Zhang
{"title":"Temperature Field Analytical Solution and Optimization Scheme after Excavation in Large-scale Ground Freezing Projects","authors":"Song Zhang, Xiao-min Zhou, Tiecheng Sun, Jiwei Zhang","doi":"10.1007/s12205-024-1833-6","DOIUrl":"https://doi.org/10.1007/s12205-024-1833-6","url":null,"abstract":"<p>Large-scale freezing projects, especially horizontal freezing projects, suffer from the problem of long exposure times, and weakening of the frozen curtain often occurs in the excavation stage. An analytical solution for the temperature between the freezing pipe and excavation surface was deduced in this study to evaluate the freezing effect at this stage. The solution is verified by in-situ measurements of a large-scale freezing project. The analytical solution shows that the temperature is related to the thermal conductivity of the frozen curtain, the shotcrete, the refrigerant temperature, the excavation surface temperature, and the design scheme of the frozen curtain. Moreover, the excavation surface temperature (<i>T</i><sub>s</sub>) is the critical factor. Then, the equations for the thickness and average temperature of the frozen curtain on the side close to the excavation area are derived. Numerical calculations of the frozen curtain base on analytical solution were carried out to analytical frozen curtain. The results show that when the heat dissipation of the exposed excavation surface is considered, the tensile stresses of the vault and bottom plate increase by up to 135%, the compressive stress of the sidewall increases by 29%, and the shear stress of the shoulder increases by 144%. While three solutions were proposed, and their application scenarios and effects are discussed. This study can provide a reference for the design of large-scale freezing projects to protect the frozen curtain after excavation.</p>","PeriodicalId":17897,"journal":{"name":"KSCE Journal of Civil Engineering","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141612203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Calibration of Accelerated Corrosion Regime for Short Square RC Columns Reinforced with Polypropylene and/or Steel Fibers","authors":"Shashank Chandra, Umesh Kumar Sharma","doi":"10.1007/s12205-024-0169-6","DOIUrl":"https://doi.org/10.1007/s12205-024-0169-6","url":null,"abstract":"<p>The impressed current technique, commonly used in laboratory studies on corroded reinforced concrete, predicts mass loss via Faraday’s law. Although this method is useful for researchers, calibration is crucial to align intended and actual results, particularly regarding concrete type. The purpose of this work was to calculate the calibration parameters for different concrete mixtures that included steel or polypropylene fibres in varying amounts. The investigation was conducted using twenty-one RC columns, which were categorized into seven groups. For a maximum cumulative volume fraction of 1%, each group of columns had a specific fiber-reinforced concrete mix with a specific proportion of steel and/or polypropylene fibers. The corrosion of these reinforced concrete (RC) columns was accelerated through the implementation of the impressed current regime. Gravimetric measurements were conducted on these columns following the completion of the corrosion process. Ultimately, this study encompasses the findings and an analysis of the calibration parameters specific to the different combinations and proportions of fiber-reinforced concrete. Moreover, this research incorporates parametric studies that examine the effects of different ratios of polypropylene and/or steel fibres, together with comprehensive evaluations of the associated cost, offering precise and in-depth observations inside its scope.</p>","PeriodicalId":17897,"journal":{"name":"KSCE Journal of Civil Engineering","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141614818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}