{"title":"Shaking Table Model Tests and Stability Analysis of Slopes Reinforced with New Anti-Seismic Anchor Cables","authors":"Xing Gao, Jinqing Jia, Xiaohua Bao, Guoxiong Mei, Lihua Zhang, Bingxiong Tu","doi":"10.1007/s12205-024-1866-x","DOIUrl":null,"url":null,"abstract":"<p>To address the problem of brittle damage of CGACs under seismic loads, a C&S-RAC and an EB-SAC were developed. Multiple sets of shaking table model tests of anchored slopes under the excitation of El Centro, Landers and sine waves were carried out. The effect of the type and frequency of seismic waves on the dynamic response law of the C&S-RAC and EB-SAC reinforced slopes was clarified, and a new method for evaluating the dynamic stability of anchored slopes based on GMM was established. The results show that the shock-absorbing devices of the C&S-RAC and EB-SAC can effectively reduce the shock effect of earthquakes on slopes and reduce the whiplash effect of anchored slopes. The seismic reinforcement performance of each type of anti-seismic anchor cable differs at different seismic frequencies, and the influence of the seismic wave frequency should be considered when selecting anti-seismic anchor cables in the seismic reinforcement design of slopes. The EB-SAC buffer cushion effectively decreases the vibration intensity of the anchor plate and has a stronger seismic isolation effect on high-frequency seismic waves. The research results provide more references for the selection of anchor cables for slope reinforcement in high seismic intensity areas and the stability evaluation of anchored slopes during earthquakes.</p>","PeriodicalId":17897,"journal":{"name":"KSCE Journal of Civil Engineering","volume":"57 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"KSCE Journal of Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12205-024-1866-x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
To address the problem of brittle damage of CGACs under seismic loads, a C&S-RAC and an EB-SAC were developed. Multiple sets of shaking table model tests of anchored slopes under the excitation of El Centro, Landers and sine waves were carried out. The effect of the type and frequency of seismic waves on the dynamic response law of the C&S-RAC and EB-SAC reinforced slopes was clarified, and a new method for evaluating the dynamic stability of anchored slopes based on GMM was established. The results show that the shock-absorbing devices of the C&S-RAC and EB-SAC can effectively reduce the shock effect of earthquakes on slopes and reduce the whiplash effect of anchored slopes. The seismic reinforcement performance of each type of anti-seismic anchor cable differs at different seismic frequencies, and the influence of the seismic wave frequency should be considered when selecting anti-seismic anchor cables in the seismic reinforcement design of slopes. The EB-SAC buffer cushion effectively decreases the vibration intensity of the anchor plate and has a stronger seismic isolation effect on high-frequency seismic waves. The research results provide more references for the selection of anchor cables for slope reinforcement in high seismic intensity areas and the stability evaluation of anchored slopes during earthquakes.
期刊介绍:
The KSCE Journal of Civil Engineering is a technical bimonthly journal of the Korean Society of Civil Engineers. The journal reports original study results (both academic and practical) on past practices and present information in all civil engineering fields.
The journal publishes original papers within the broad field of civil engineering, which includes, but are not limited to, the following: coastal and harbor engineering, construction management, environmental engineering, geotechnical engineering, highway engineering, hydraulic engineering, information technology, nuclear power engineering, railroad engineering, structural engineering, surveying and geo-spatial engineering, transportation engineering, tunnel engineering, and water resources and hydrologic engineering