大型地面冻结工程开挖后的温度场分析解法与优化方案

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Song Zhang, Xiao-min Zhou, Tiecheng Sun, Jiwei Zhang
{"title":"大型地面冻结工程开挖后的温度场分析解法与优化方案","authors":"Song Zhang, Xiao-min Zhou, Tiecheng Sun, Jiwei Zhang","doi":"10.1007/s12205-024-1833-6","DOIUrl":null,"url":null,"abstract":"<p>Large-scale freezing projects, especially horizontal freezing projects, suffer from the problem of long exposure times, and weakening of the frozen curtain often occurs in the excavation stage. An analytical solution for the temperature between the freezing pipe and excavation surface was deduced in this study to evaluate the freezing effect at this stage. The solution is verified by in-situ measurements of a large-scale freezing project. The analytical solution shows that the temperature is related to the thermal conductivity of the frozen curtain, the shotcrete, the refrigerant temperature, the excavation surface temperature, and the design scheme of the frozen curtain. Moreover, the excavation surface temperature (<i>T</i><sub>s</sub>) is the critical factor. Then, the equations for the thickness and average temperature of the frozen curtain on the side close to the excavation area are derived. Numerical calculations of the frozen curtain base on analytical solution were carried out to analytical frozen curtain. The results show that when the heat dissipation of the exposed excavation surface is considered, the tensile stresses of the vault and bottom plate increase by up to 135%, the compressive stress of the sidewall increases by 29%, and the shear stress of the shoulder increases by 144%. While three solutions were proposed, and their application scenarios and effects are discussed. This study can provide a reference for the design of large-scale freezing projects to protect the frozen curtain after excavation.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temperature Field Analytical Solution and Optimization Scheme after Excavation in Large-scale Ground Freezing Projects\",\"authors\":\"Song Zhang, Xiao-min Zhou, Tiecheng Sun, Jiwei Zhang\",\"doi\":\"10.1007/s12205-024-1833-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Large-scale freezing projects, especially horizontal freezing projects, suffer from the problem of long exposure times, and weakening of the frozen curtain often occurs in the excavation stage. An analytical solution for the temperature between the freezing pipe and excavation surface was deduced in this study to evaluate the freezing effect at this stage. The solution is verified by in-situ measurements of a large-scale freezing project. The analytical solution shows that the temperature is related to the thermal conductivity of the frozen curtain, the shotcrete, the refrigerant temperature, the excavation surface temperature, and the design scheme of the frozen curtain. Moreover, the excavation surface temperature (<i>T</i><sub>s</sub>) is the critical factor. Then, the equations for the thickness and average temperature of the frozen curtain on the side close to the excavation area are derived. Numerical calculations of the frozen curtain base on analytical solution were carried out to analytical frozen curtain. The results show that when the heat dissipation of the exposed excavation surface is considered, the tensile stresses of the vault and bottom plate increase by up to 135%, the compressive stress of the sidewall increases by 29%, and the shear stress of the shoulder increases by 144%. While three solutions were proposed, and their application scenarios and effects are discussed. This study can provide a reference for the design of large-scale freezing projects to protect the frozen curtain after excavation.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12205-024-1833-6\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12205-024-1833-6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

大型冻结工程,尤其是水平冻结工程,存在暴露时间长的问题,冻结帷幕的减弱往往发生在开挖阶段。本研究推导出了冻结管与开挖面之间温度的解析解,以评估该阶段的冻结效果。通过对一项大型冻结工程的现场测量,对该解决方案进行了验证。分析结果表明,温度与冻结帷幕的导热系数、喷射混凝土、制冷剂温度、开挖面温度以及冻结帷幕的设计方案有关。此外,开挖表面温度 (Ts) 是关键因素。然后,推导出靠近开挖区域一侧的冻结帷幕厚度和平均温度方程。在分析解的基础上,对冻结帷幕进行了数值计算。结果表明,当考虑到裸露开挖面的散热时,拱顶和底板的拉应力增加了 135%,侧壁的压应力增加了 29%,肩部的剪应力增加了 144%。同时提出了三种解决方案,并讨论了其应用场景和效果。本研究可为大型冻结工程设计提供参考,以保护开挖后的冻结帷幕。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Temperature Field Analytical Solution and Optimization Scheme after Excavation in Large-scale Ground Freezing Projects

Large-scale freezing projects, especially horizontal freezing projects, suffer from the problem of long exposure times, and weakening of the frozen curtain often occurs in the excavation stage. An analytical solution for the temperature between the freezing pipe and excavation surface was deduced in this study to evaluate the freezing effect at this stage. The solution is verified by in-situ measurements of a large-scale freezing project. The analytical solution shows that the temperature is related to the thermal conductivity of the frozen curtain, the shotcrete, the refrigerant temperature, the excavation surface temperature, and the design scheme of the frozen curtain. Moreover, the excavation surface temperature (Ts) is the critical factor. Then, the equations for the thickness and average temperature of the frozen curtain on the side close to the excavation area are derived. Numerical calculations of the frozen curtain base on analytical solution were carried out to analytical frozen curtain. The results show that when the heat dissipation of the exposed excavation surface is considered, the tensile stresses of the vault and bottom plate increase by up to 135%, the compressive stress of the sidewall increases by 29%, and the shear stress of the shoulder increases by 144%. While three solutions were proposed, and their application scenarios and effects are discussed. This study can provide a reference for the design of large-scale freezing projects to protect the frozen curtain after excavation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信