Eryu Zhu, Honghe Jian, Yongzheng Zhou, Weibing Pan
{"title":"Durability of Modified Asphalt-Based Grouting Material for Post-Tensioned Concrete Structures","authors":"Eryu Zhu, Honghe Jian, Yongzheng Zhou, Weibing Pan","doi":"10.1007/s12205-024-0308-0","DOIUrl":"https://doi.org/10.1007/s12205-024-0308-0","url":null,"abstract":"<p>This work proposes that a non-bleeding modified asphalt-based grouting material (AG) can be used to improve the durability performance of prestressed tendon (PT) in post-tensioned concrete structures (PTCS). Therefore, durable and mechanical properties of PTs are tested and compared to PTs coated by AG, AH70 matrix asphalt (AH), epoxy resin (ER), respectively. The combined effect of different coatings on diffusion coefficient, strength and ductility are highlighted. Results showed that AG recorded higher enhancing impermeability than ER and exceeded by 1–2 orders of magnitude compared with traditional CG. Compared with the PS and AH, ER and AG can slightly improved the strength of the strands and significantly enhance the ductility by 50% or more. A corrosion constitutive model for different coated strands is proposed, which features excellent applicability and accuracy. Finally, based on the linear weighted sum optimization method, the protective effect of AG has been discussed and validated. Satisfactory responses have been found AG is effective in enhancing the durability of prestressed strands.</p>","PeriodicalId":17897,"journal":{"name":"KSCE Journal of Civil Engineering","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141776672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design and Performance Research of a New Type of Spherical Force-Measuring Bearing of Bridges Based on Button Type Microsensor","authors":"Nianchun Deng, Menglong He, Nanrong Gu, Hongjie Liang","doi":"10.1007/s12205-024-2646-3","DOIUrl":"https://doi.org/10.1007/s12205-024-2646-3","url":null,"abstract":"<p>To realize the real-time monitoring and evaluation of the bearing state such as force and deformation, and to meet the intelligent development needs of “self-sensing and self-evaluation” of engineering structures, this paper carried out a finite element simulation of the mechanical properties of spherical bearings and developed a new type of spherical force-measuring bearing based on the button type microsensors through the integration of structural monitoring technology. The simulation results show that the von Mises stress of the spherical bearing is mainly concentrated in the annular region where the edge of the spherical crown is located, and the magnitude of the force value decreases from the edge to the center gradually. The performance characteristics of spherical force-measuring bearings based on the button-type microsensor were studied by combining finite element simulation and experiments. The research results show that the sensitivity of this type of sensor is stable, and the growth trend of the measurement data is ideal with small dispersion, which is in line with the distribution law of the bearing internal force. The temperature loading test was carried out to study the effect of temperature on the bearing measurement accuracy. The fixed force value obtains the relationship between strain and temperature, and the minimum value method is proposed to calculate the temperature compensation coefficient and temperature compensation equation by fitting the slope of a straight line to improve the measurement accuracy of the sensor. Therefore, the research results have good value for engineering applications.</p>","PeriodicalId":17897,"journal":{"name":"KSCE Journal of Civil Engineering","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141776739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Steel-Concrete Bond versus Primary Crack Opening in Reinforced Concrete Beams","authors":"Jianming Wang, Jian Guo, Chunyu Fu","doi":"10.1007/s12205-024-1566-6","DOIUrl":"https://doi.org/10.1007/s12205-024-1566-6","url":null,"abstract":"<p>Bond deterioration between steel bars and concrete in reinforced-concrete beams mostly occurs close to the primary (i.e., bending induced) cracks. To investigate bond-cracking interaction, a novel bond-slip relationship is introduced in this study, where bond parameters are a function of crack-opening displacement. Such a displacement is in turn evaluated based on the highly variable strain profiles in the concrete, through an iterative procedure. The effectiveness of the proposed approach is validated against a set of tests on RC beams well-documented in the literature, which show a clear trend for the local bond stresses to decrease close to the primary cracks. The bond-slip relationships along the bar and the maximum bond stress depend on the applied loads and on the crack pattern, with a mutual interaction that affects both the crack-opening displacement and the bond stresses, causing a nonlinear increase in the steel strains. Nevertheless, the bond-slip relationships display descending branches characterized by remarkably similar slopes within a given region, irrespective of the loads. Consequently, if the descending branch for this region is known under a particular load, the branches under other loads can be obtained by horizontally translating the known branch. The proposed approach may provide a useful tool to describe bond behavior in RC members and to understand the complex interaction among the displacements due to crack opening, bond stresses and their structural effect.</p>","PeriodicalId":17897,"journal":{"name":"KSCE Journal of Civil Engineering","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141776740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dansani Vasanthan Muttuvelu, Simon Wyke, Jes Vollertsen
{"title":"Measuring Infiltration Rates in Permeable Asphalt Pavement in Urban Landscapes","authors":"Dansani Vasanthan Muttuvelu, Simon Wyke, Jes Vollertsen","doi":"10.1007/s12205-024-0014-y","DOIUrl":"https://doi.org/10.1007/s12205-024-0014-y","url":null,"abstract":"<p>Efficient water management of roads has become increasingly important due to the escalating challenges posed by climate change. The existing body of research focusing on permeable pavements with surface layers of asphalts, concrete, and interlocking pavers, is limited, especially with respect to the use of porous asphalt as a surface layer is. Addressing the challenges and opportunities associated with permeable asphalt pavements, such as cleaning practices and maintaining infiltration efficiency is, nonetheless, essential to improve and advance urban engineering practices. This research, therefore, explores the intricate relationship between porous asphalt pavements and the dynamic behavior of infiltration rates over time. Utilizing both quantitative and qualitative data, the study revealed a variability in infiltration rates along the tested roads, affected by variables such as, pavement porosity and surface condition resulting from variation in the pavement construction process and practice.. The study, additionally, show that continuous cleaning and maintenance have a positive effect on the infiltration capability of permeable asphalt pavements, rendering surface cleaning essential, to maintain a high infiltration performance of permeable asphalt pavements.</p>","PeriodicalId":17897,"journal":{"name":"KSCE Journal of Civil Engineering","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141776738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of Silt Content on Mechanical Behavior of River Gravel Material","authors":"Lifeng Wen, Yijie Li, Yanlong Li, Ying Yang","doi":"10.1007/s12205-024-1700-5","DOIUrl":"https://doi.org/10.1007/s12205-024-1700-5","url":null,"abstract":"<p>River gravel foundations are frequently encountered geological conditions during the construction of earth-rockfill dams. Despite pre-treatment, river gravel foundations inevitably contain some amount of silt, directly impacting their behavior. This paper conducts sixteen sets of large-scale triaxial experiment to study the influence of silt content on mechanical behavior of the river gravel material. The loess was used to simulate the silt. Triaxial experiments with four different silt contents (0%, 2%, 4%, 6%) and four different confining pressures were carried out. The results showed that the peak strength decreased with the increase of silt content. Under low confining pressure, the specimen initially exhibits contraction, followed by dilation. At high confining pressure, the specimen exhibit contraction. Due to the bonding and lubrication characteristic of silt, the cohesion <i>c</i> increased with the increase of silt content, and the internal friction angle <i>φ</i> decreases with the increase of silt content. The lubrication of silt reduced the specimen deformation resistance. The increase of silt content results in the decreases of the initial shear modulus <i>E</i><sub><i>1</i></sub>, especially at the high confining pressure condition. As silt increases the dry density, the material’s the failure poisson ratio <i>v</i><sub><i>if</i></sub> decreases, especially under low confining pressure conditions.</p>","PeriodicalId":17897,"journal":{"name":"KSCE Journal of Civil Engineering","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141776742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bowen Han, Huaguo Gao, Lingxin Zhang, Shuhong Wang, Lu Yang
{"title":"The Response of Angle Steel Skeleton-Reinforced Concrete Beams to Low-Cycle and Static Loads","authors":"Bowen Han, Huaguo Gao, Lingxin Zhang, Shuhong Wang, Lu Yang","doi":"10.1007/s12205-024-1279-x","DOIUrl":"https://doi.org/10.1007/s12205-024-1279-x","url":null,"abstract":"<p>The conventional reinforced concrete beam exhibits limitations in terms of bearing capacity, intricate construction procedures, and substantial labor requirements. In response to these challenges, a novel approach featuring an Angle Steel Skeleton (ASS) for concrete reinforcement has been proposed. In this study, four concrete beam specimens along with two beam-column joint specimens were meticulously prepared for static loading tests and low-cycle loading tests. The bending performance of the innovative structure, Angle Steel Skeleton-Reinforced Concrete Beam (ASSB), was comprehensively analyzed through static loading testing. Furthermore, formulations were developed to calculate the stiffness and bearing capacity of ASSB. Employing the finite element method, an examination was conducted to elucidate the influence of factors such as shear span ratio, concrete strength, and angle steel strength on the bearing capacity of concrete beams. Building upon the aforementioned investigations, the seismic performance and mechanical response of Angle Steel Skeleton-Concrete Beam-Column Joints (ASSJ) was investigated through low-cycle loading tests. An in-depth analysis was conducted to establish the correlation between the axial compression ratio and steel skeleton stress. Results from the research indicate that the adoption of ASS in lieu of steel cages results in a substantial enhancement in the ultimate bearing capacity of concrete beams, ranging from 29% to 36.6%. Additionally, there is a twofold increase in energy dissipation capacity, accompanied by a 14% increase in ductility. Notably, ASSJ specimens exhibit superior seismic performance, particularly in low-intensity seismic zones.</p>","PeriodicalId":17897,"journal":{"name":"KSCE Journal of Civil Engineering","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141776735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wonsuh Sung, Ki-Il Song, Kyoung-Yul Kim, Hee-Hwan Ryu
{"title":"Development of Grouting Quality Evaluation System for a Shield TBM Tunnel Using the Impact-Echo Method","authors":"Wonsuh Sung, Ki-Il Song, Kyoung-Yul Kim, Hee-Hwan Ryu","doi":"10.1007/s12205-024-0128-2","DOIUrl":"https://doi.org/10.1007/s12205-024-0128-2","url":null,"abstract":"<p>Effective backfill grouting is crucial for the stability of Tunnel Boring Machine (TBM) tunnels. Insufficient grouting can lead to severe consequences, including groundwater seepage, surface settling, and cavity in the ground. This study introduces an innovative evaluation system using the impact-echo (IE) method to ensure the quality of backfill grouting behind segment linings. Through in-depth analysis of IE signals, three key indicators—Geometric Damping Ratio (GDR), Dominant Resonance Duration (DRD), and the number of post-peak amplitude Counts above 10% of the peak value after 1 millisecond (N10AMP)—have been identified, effectively capturing grouting quality in the near-surface zone. Despite the current limitations of solenoid hammers in terms of structural thickness applicability, our enhancements in the diversification of size, impact force, and contact time extend their utility, promising greater flexibility and precision in structural evaluations. This aligns with the evolving demands of modern tunnel engineering projects, ensuring compatibility and efficiency. The optimized automated IE approach was then applied to a real construction site segment, showcasing its superiority over conventional methods. Successfully deployed in two field locations, the system reliably assessed backfill grouting quality. This impact-echo system streamlines data acquisition with an automated solenoid, proving its field-ready capability. By ensuring proper backfill grouting, this novel IE system promotes safer, more efficient TBM tunnel construction with enhanced stability, safety, and reduced maintenance costs.</p>","PeriodicalId":17897,"journal":{"name":"KSCE Journal of Civil Engineering","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141776673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Study on the Bearing Characteristics of Different Shaped Mats on Cohesive Soil","authors":"Runbo Cai, Run Liu, Chengfeng Li","doi":"10.1007/s12205-024-2119-8","DOIUrl":"https://doi.org/10.1007/s12205-024-2119-8","url":null,"abstract":"<p>Mat foundations have been widely used as foundations of mobile offshore platforms such as jack-up rigs and installation platforms. Throughout the service period, the mat bears coupled multi-dimensional loads transferred from the superstructure and directly from the environment. Evaluating the bearing capacity of the mat is the premise of offshore platform design. However, there are few studies on the bearing capacity of commonly used irregularly shaped mats under multi-dimensional load conditions. Looking at two types of A-shaped mats on cohesive soil, uniaxial bearing capacities are calculated using the finite element method (FEM) in this study. The centrifuge test was performed to verify the FEM results. Effects of the length-to-width aspect ratio of the foundation on bearing capacities are discussed. The <i>V-H</i>, <i>V-M</i>, and <i>V-H-M</i> failure envelopes of mats with unlimited and zero tension interfaces are obtained. Studies have shown that the uniaxial bearing capacities change monotonously with aspect ratio increases, and that the bearing capacity of a rectangular A-shaped mat is higher than that of a trapezoidal A-shaped mat. The <i>V-H-M</i> envelope with unlimited tension interface condition is ellipsoid-shaped, while that with zero tension interface is scallop-shaped. With the capacity expressions established in the paper, it is possible to quickly check the bearing state of the mat under a given <i>V-H-M</i> load condition, and then assess the safety of the engineering operation.</p>","PeriodicalId":17897,"journal":{"name":"KSCE Journal of Civil Engineering","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141776741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Experimental Study on the Dynamic Response and Damage State of Steel Square Tubular Structural Components by Near-field Explosions","authors":"Wanyue Wang, Shaobo Geng, Wenqiang Li, Yaling Liu, Ying Gao, Yunshan Han","doi":"10.1007/s12205-024-1679-y","DOIUrl":"https://doi.org/10.1007/s12205-024-1679-y","url":null,"abstract":"<p>In order to explore the dynamic response and damage state of the steel square tubular structural component under blast-loading, A few experiments of near-field explosions are conducted respectively on five steel square tubes, Among them, two are hollow, one is wrapped with glass fiber-reinforced plastic (GFRP) on the front surface, and others are the one being infilled with C30 and the other with C70 concrete. It can be concluded from the analysis on the deformation and strain of the tubes that, at the same explosive mass, when the standoff distance of the steel square tube is lengthened from 48.5 mm to 68.5 mm, the maximal depth of deformation on the front surface is lessened by 37.5%, deflection by 42.1% and residual strain by 66.7%. As wrapped with GFRP, the maximal deformation is reduced by 17.0%, deflection by 30.8% and the residual strain is decreased by 69.5% respectively, the approach by wrapped with GFRP on the tube can improve the performance of blast resistance. While being infilled with concrete, the deformation of the tube is greatly reduced. Moreover, the deformation is decreased with the increment of the compressive strength of the concrete. Specifically, when the components are infilled with C30 and C70 respectively, the residual strains are decreased by 91.3% and 69.1% respectively.</p>","PeriodicalId":17897,"journal":{"name":"KSCE Journal of Civil Engineering","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141785621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"In-situ Mechanical Property and Mechanism Analysis of Shallow Expansive Soil under the Influence of Water Content and Fissures","authors":"Xiaoqian Luo, Lingwei Kong, Junbiao Yan, Zhiao Gao, Shengkui Tian","doi":"10.1007/s12205-024-1440-6","DOIUrl":"https://doi.org/10.1007/s12205-024-1440-6","url":null,"abstract":"<p>The mechanical properties of shallow expansive soil are crucial to expansive soil engineering. However, few effective test methods have been available to measure the in-situ mechanical properties of shallow expansive soil. This paper attempts to test the effects of water content and fissures on the mechanical properties of shallow expansive soil under a natural state by in-situ CBR and resilience modulus tests. The evolution characteristics of shrinkage fissures in expansive soil were recorded and observed. The fissure connectivity coefficient is used to express the degree of fissure development and the integrity of soil structure. The CBR strength and resilience modulus of expansive soil increase first and then decrease with the decrease of water content and the increase of fissure development degree, and reach the peak near the optimal water content. It is effective to use the inverse hyperbolic sine function to fit the relationship between soil mechanical parameters, water content, and fissure connectivity coefficient. When the water content is higher, the influence of water content on soil mechanical properties is great. When the water content is lower, fissures are more developed, and the influence of fissures on soil mechanical properties is dominant.</p>","PeriodicalId":17897,"journal":{"name":"KSCE Journal of Civil Engineering","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141776736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}