Journal of Vascular Research最新文献

筛选
英文 中文
The Role of ADAMTS-4 in Atherosclerosis and Vessel Wall Abnormalities. ADAMTS-4在动脉粥样硬化和血管壁异常中的作用。
IF 1.7 4区 医学
Journal of Vascular Research Pub Date : 2022-01-01 Epub Date: 2022-01-20 DOI: 10.1159/000521498
Rudjer Novak, Stela Hrkac, Grgur Salai, Josko Bilandzic, Luka Mitar, Lovorka Grgurevic
{"title":"The Role of ADAMTS-4 in Atherosclerosis and Vessel Wall Abnormalities.","authors":"Rudjer Novak,&nbsp;Stela Hrkac,&nbsp;Grgur Salai,&nbsp;Josko Bilandzic,&nbsp;Luka Mitar,&nbsp;Lovorka Grgurevic","doi":"10.1159/000521498","DOIUrl":"https://doi.org/10.1159/000521498","url":null,"abstract":"<p><p>Extracellular matrix proteins are regulated by metzincin proteases, like the disintegrin metalloproteinases with thrombospondin motifs (ADAMTS) family members. This review focuses on the emerging role which ADAMTS-4 might play in vascular pathology, which has implications for atherosclerosis and vessel wall abnormalities, as well as for the resulting diseases, such as cardiovascular and cerebrovascular disease, aortic aneurysms, and dissections. Major substrates of ADAMTS-4 are proteoglycans expressed physiologically in smooth muscle cells of blood vessels. Good examples are versican and aggrecan, principal vessel wall proteoglycans that are targeted by ADAMTS-4, driving blood vessel atrophy, which is why this metzincin protease was implicated in the pathophysiology of vascular diseases with an atherosclerotic background. Despite emerging evidence, it is important not to exaggerate the role of ADAMTS-4 as it is likely only a small piece of the complex atherosclerosis puzzle and one that could be functionally redundant due to its high structural similarity to other ADAMTS family members. The therapeutic potential of inhibiting ADAMTS-4 to halt the progression of vascular disease after initialization of treatment is unlikely. However, it is not excluded that it might find a purpose as a biomarker of vascular disease, possibly as an indicator in a larger cytokine panel.</p>","PeriodicalId":17530,"journal":{"name":"Journal of Vascular Research","volume":"59 2","pages":"69-77"},"PeriodicalIF":1.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39837539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Stromal Vascular Fraction Reverses the Age-Related Impairment in Revascularization following Injury. 基质血管分数逆转损伤后血管重建中与年龄相关的损伤。
IF 1.7 4区 医学
Journal of Vascular Research Pub Date : 2022-01-01 DOI: 10.1159/000526002
Gabrielle Rowe, David S Heng, Jason E Beare, Nicholas A Hodges, Evan P Tracy, Walter L Murfee, Amanda J LeBlanc
{"title":"Stromal Vascular Fraction Reverses the Age-Related Impairment in Revascularization following Injury.","authors":"Gabrielle Rowe,&nbsp;David S Heng,&nbsp;Jason E Beare,&nbsp;Nicholas A Hodges,&nbsp;Evan P Tracy,&nbsp;Walter L Murfee,&nbsp;Amanda J LeBlanc","doi":"10.1159/000526002","DOIUrl":"https://doi.org/10.1159/000526002","url":null,"abstract":"<p><p>Adipose-derived stromal vascular fraction (SVF) has emerged as a potential regenerative therapy, but few studies utilize SVF in a setting of advanced age. Additionally, the specific cell population in SVF providing therapeutic benefit is unknown. We hypothesized that aging would alter the composition of cell populations present in SVF and its ability to promote angiogenesis following injury, a mechanism that is T cell-mediated. SVF isolated from young and old Fischer 344 rats was examined with flow cytometry for cell composition. Mesenteric windows from old rats were isolated following exteriorization-induced (EI) hypoxic injury and intravenous injection of one of four cell therapies: (1) SVF from young or (2) old donors, (3) SVF from old donors depleted of or (4) enriched for T cells. Advancing age increased the SVF T-cell population but reduced revascularization following injury. Both young and aged SVF incorporated throughout the host mesenteric microvessels, but only young SVF significantly increased vascular area following EI. This study highlights the effect of donor age on SVF angiogenic efficacy and demonstrates how the ex vivo mesenteric-window model can be used in conjunction with SVF therapy to investigate its contribution to angiogenesis.</p>","PeriodicalId":17530,"journal":{"name":"Journal of Vascular Research","volume":"59 6","pages":"343-357"},"PeriodicalIF":1.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9780192/pdf/nihms-1845606.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10536673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Erratum. 勘误表。
IF 1.7 4区 医学
Journal of Vascular Research Pub Date : 2022-01-01 DOI: 10.1159/000526589
{"title":"Erratum.","authors":"","doi":"10.1159/000526589","DOIUrl":"https://doi.org/10.1159/000526589","url":null,"abstract":"","PeriodicalId":17530,"journal":{"name":"Journal of Vascular Research","volume":"59 5","pages":"325"},"PeriodicalIF":1.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10253127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Smooth Muscle Cell Notch2 Is Not Required for Atherosclerotic Plaque Formation in ApoE Null Mice. ApoE缺失小鼠动脉粥样硬化斑块形成不需要平滑肌细胞Notch2。
IF 1.7 4区 医学
Journal of Vascular Research Pub Date : 2022-01-01 DOI: 10.1159/000525258
Jessica Davis-Knowlton, Jacqueline E Turner, Anne Harrington, Lucy Liaw
{"title":"Smooth Muscle Cell Notch2 Is Not Required for Atherosclerotic Plaque Formation in ApoE Null Mice.","authors":"Jessica Davis-Knowlton,&nbsp;Jacqueline E Turner,&nbsp;Anne Harrington,&nbsp;Lucy Liaw","doi":"10.1159/000525258","DOIUrl":"https://doi.org/10.1159/000525258","url":null,"abstract":"<p><strong>Introduction: </strong>We previously identified Notch2 in smooth muscle cells (SMC) in human atherosclerosis and found that signaling via Notch2 suppressed human SMC proliferation. Thus, we tested whether loss of Notch2 in SMC would alter atherosclerotic plaque progression using a mouse model.</p><p><strong>Methods: </strong>Atherogenesis was examined at the brachiocephalic artery and aortic root in a vascular SMC null (inducible smooth muscle myosin heavy chain Cre) Notch2 strain on the ApoE-/- background. We measured plaque morphology and size, as well as lipid, inflammation, and smooth muscle actin content after Western diet.</p><p><strong>Results: </strong>We generated an inducible SMC Notch2 null on the ApoE-/- background. We observed ∼90% recombination efficiency with no detectable Notch2 in the SMC. Loss of SMC Notch2 did not significantly change plaque size, lipid content, necrotic core, or medial area. However, loss of SMC Notch2 reduced the contractile SMC in brachiocephalic artery lesions and increased inflammatory content in aortic root lesions after 6 weeks of Western diet. These changes were not present with loss of SMC Notch2 after 14 weeks of Western diet.</p><p><strong>Conclusions: </strong>Our data show that loss of SMC Notch2 does not significantly reduce atherosclerotic lesion formation, although in early stages of plaque formation there are changes in SMC and inflammation.</p>","PeriodicalId":17530,"journal":{"name":"Journal of Vascular Research","volume":"59 5","pages":"261-274"},"PeriodicalIF":1.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9588530/pdf/nihms-1815853.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9762783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single-Cell RNA Sequencing Reveals Novel Genes Regulated by Hypoxia in the Lung Vasculature. 单细胞RNA测序揭示肺血管缺氧调控的新基因。
IF 1.7 4区 医学
Journal of Vascular Research Pub Date : 2022-01-01 DOI: 10.1159/000522340
Shelby Thomas, Sathiyanarayanan Manivannan, Vidu Garg, Brenda Lilly
{"title":"Single-Cell RNA Sequencing Reveals Novel Genes Regulated by Hypoxia in the Lung Vasculature.","authors":"Shelby Thomas,&nbsp;Sathiyanarayanan Manivannan,&nbsp;Vidu Garg,&nbsp;Brenda Lilly","doi":"10.1159/000522340","DOIUrl":"https://doi.org/10.1159/000522340","url":null,"abstract":"<p><p>Pulmonary arterial hypertension (PAH) is a chronic progressive disease with significant morbidity and mortality. The disease is characterized by vascular remodeling that includes increased muscularization of distal blood vessels and vessel stiffening associated with changes in extracellular matrix deposition. In humans, chronic hypoxia causes PAH, and hypoxia-induced rodent models of PAH have been used for years to study the disease. With the development of single-cell RNA sequencing technology, it is now possible to examine hypoxia-dependent transcriptional changes in vivo at a cell-specific level. In this study, we used single-cell RNA sequencing to compare lungs from wild-type (Wt) mice exposed to hypoxia for 28 days to normoxia-treated control mice. We additionally examined mice deficient for Notch3, a smooth muscle-enriched gene linked to PAH. Data analysis revealed that hypoxia promoted cell number changes in immune and endothelial cell types in the lung, activated the innate immunity pathway, and resulted in specific changes in gene expression in vascular cells. Surprisingly, we found limited differences in lungs from mice deficient for Notch3 compared to Wt controls. These findings provide novel insight into the effects of chronic hypoxia exposure on gene expression and cell phenotypes in vivo and identify unique changes to cells of the vasculature.</p>","PeriodicalId":17530,"journal":{"name":"Journal of Vascular Research","volume":"59 3","pages":"163-175"},"PeriodicalIF":1.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9117417/pdf/nihms-1779393.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9484790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Role of Blood Pressure Responses to Exercise and Vascular Insulin Sensitivity with Nocturnal Blood Pressure Dipping in Metabolic Syndrome. 代谢综合征患者夜间血压下降时血压对运动和血管胰岛素敏感性的影响
IF 1.7 4区 医学
Journal of Vascular Research Pub Date : 2022-01-01 Epub Date: 2022-03-10 DOI: 10.1159/000522063
Nathan R Stewart, Emily M Heiston, Stephanie L Miller, Anna C Ballantyne, Udeyvir S Cheema, Andrea M Spaeth, Peter Kokkinos, Steven K Malin
{"title":"Role of Blood Pressure Responses to Exercise and Vascular Insulin Sensitivity with Nocturnal Blood Pressure Dipping in Metabolic Syndrome.","authors":"Nathan R Stewart, Emily M Heiston, Stephanie L Miller, Anna C Ballantyne, Udeyvir S Cheema, Andrea M Spaeth, Peter Kokkinos, Steven K Malin","doi":"10.1159/000522063","DOIUrl":"10.1159/000522063","url":null,"abstract":"<p><strong>Introduction: </strong>Nocturnal systolic blood pressure (SBP) dipping is independently related to cardiovascular disease risk, but it is unclear if vascular insulin sensitivity associates with SBP dipping in patients with metabolic syndrome (MetS).</p><p><strong>Methods: </strong>Eighteen adults with MetS (ATP III criteria 3.3 ± 0.6; 53.2 ± 6.5 years; body mass index 35.8 ± 4.5 kg/m2) were categorized as \"dippers\" (≥10% change in SBP; n = 4 F/3 M) or \"non-dippers\" (<10%; n = 9 F/2 M). Twenty-four-hour ambulatory blood pressure was recorded to assess SBP dipping. A euglycemic-hyperinsulinemic clamp (40 mU/m2/min, 90 mg/dL) with ultrasound (flow mediated dilation) was performed to test vascular insulin sensitivity. A graded, incremental exercise test was conducted to estimate sympathetic activity. Heart rate (HR) recovery after exercise was then used to determine parasympathetic activity. Metabolic panels and body composition (DXA) were also tested.</p><p><strong>Results: </strong>Dippers had greater drops in SBP (16.63 ± 5.2 vs. 1.83 ± 5.6%, p < 0.01) and experienced an attenuated rise in both SBPslope (4.7 ± 2.3 vs. 7.2 ± 2.5 mm Hg/min, p = 0.05) and HRslope to the incremental exercise test compared to non-dippers (6.5 ± 0.9 vs. 8.2 ± 1.7 bpm/min, p = 0.03). SBP dipping correlated with higher insulin-stimulated flow-mediated dilation (r = 0.52, p = 0.03), although the relationship was no longer significant after covarying for HRslope (r = 0.42, p = 0.09).</p><p><strong>Conclusion: </strong>Attenuated rises in blood pressure and HR to exercise appear to play a larger role than vascular insulin sensitivity in SBP dipping in adults with MetS.</p>","PeriodicalId":17530,"journal":{"name":"Journal of Vascular Research","volume":"59 1","pages":"151-162"},"PeriodicalIF":1.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10848781/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43041951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vascular Smooth Muscle Cells Mechanosensitive Regulators and Vascular Remodeling. 血管平滑肌细胞机械敏感调节因子与血管重构。
IF 1.7 4区 医学
Journal of Vascular Research Pub Date : 2022-01-01 Epub Date: 2021-12-22 DOI: 10.1159/000519845
Shangmin Liu, Zhanyi Lin
{"title":"Vascular Smooth Muscle Cells Mechanosensitive Regulators and Vascular Remodeling.","authors":"Shangmin Liu,&nbsp;Zhanyi Lin","doi":"10.1159/000519845","DOIUrl":"https://doi.org/10.1159/000519845","url":null,"abstract":"<p><p>Blood vessels are subjected to mechanical loads of pressure and flow, inducing smooth muscle circumferential and endothelial shear stresses. The perception and response of vascular tissue and living cells to these stresses and the microenvironment they are exposed to are critical to their function and survival. These mechanical stimuli not only cause morphological changes in cells and vessel walls but also can interfere with biochemical homeostasis, leading to vascular remodeling and dysfunction. However, the mechanisms underlying how these stimuli affect tissue and cellular function, including mechanical stimulation-induced biochemical signaling and mechanical transduction that relies on cytoskeletal integrity, are unclear. This review focuses on signaling pathways that regulate multiple biochemical processes in vascular mesangial smooth muscle cells in response to circumferential stress and are involved in mechanosensitive regulatory molecules in response to mechanotransduction, including ion channels, membrane receptors, integrins, cytoskeletal proteins, nuclear structures, and cascades. Mechanoactivation of these signaling pathways is closely associated with vascular remodeling in physiological or pathophysiological states.</p>","PeriodicalId":17530,"journal":{"name":"Journal of Vascular Research","volume":"59 2","pages":"90-113"},"PeriodicalIF":1.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39747088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 22
Erratum. 勘误表。
IF 1.7 4区 医学
Journal of Vascular Research Pub Date : 2022-01-01 DOI: 10.1159/000525392
{"title":"Erratum.","authors":"","doi":"10.1159/000525392","DOIUrl":"https://doi.org/10.1159/000525392","url":null,"abstract":"","PeriodicalId":17530,"journal":{"name":"Journal of Vascular Research","volume":"59 5","pages":"324"},"PeriodicalIF":1.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10235181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Microvascular-Lymphatic Interface and Tissue Homeostasis: Critical Questions That Challenge Current Understanding. 微血管淋巴界面和组织稳态:挑战当前理解的关键问题。
IF 1.7 4区 医学
Journal of Vascular Research Pub Date : 2022-01-01 Epub Date: 2022-10-31 DOI: 10.1159/000525787
Arinola O Lampejo, Michiko Jo, Walter L Murfee, Jerome W Breslin
{"title":"The Microvascular-Lymphatic Interface and Tissue Homeostasis: Critical Questions That Challenge Current Understanding.","authors":"Arinola O Lampejo,&nbsp;Michiko Jo,&nbsp;Walter L Murfee,&nbsp;Jerome W Breslin","doi":"10.1159/000525787","DOIUrl":"10.1159/000525787","url":null,"abstract":"<p><p>Lymphatic and blood microvascular networks play critical roles in the clearance of excess fluid from local tissue spaces. Given the importance of these dynamics in inflammation, tumor metastasis, and lymphedema, understanding the coordinated function and remodeling between lymphatic and blood vessels in adult tissues is necessary. Knowledge gaps exist because the functions of these two systems are typically considered separately. The objective of this review was to highlight the coordinated functional relationships between blood and lymphatic vessels in adult microvascular networks. Structural, functional, temporal, and spatial relationships will be framed in the context of maintaining tissue homeostasis, vessel permeability, and system remodeling. The integration across systems will emphasize the influence of the local environment on cellular and molecular dynamics involved in fluid flow from blood capillaries to initial lymphatic vessels in microvascular networks.</p>","PeriodicalId":17530,"journal":{"name":"Journal of Vascular Research","volume":"59 6","pages":"327-342"},"PeriodicalIF":1.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9780194/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10442722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
What Went Wrong with VEGF-A in Peripheral Arterial Disease? A Systematic Review and Biological Insights on Future Therapeutics. VEGF-A在外周动脉疾病中出了什么问题?对未来治疗方法的系统回顾和生物学见解。
IF 1.7 4区 医学
Journal of Vascular Research Pub Date : 2022-01-01 DOI: 10.1159/000527079
Stavroula L Kastora, Jonathan Eley, Martin Gannon, Ross Melvin, Euan Munro, Sotirios A Makris
{"title":"What Went Wrong with VEGF-A in Peripheral Arterial Disease? A Systematic Review and Biological Insights on Future Therapeutics.","authors":"Stavroula L Kastora,&nbsp;Jonathan Eley,&nbsp;Martin Gannon,&nbsp;Ross Melvin,&nbsp;Euan Munro,&nbsp;Sotirios A Makris","doi":"10.1159/000527079","DOIUrl":"https://doi.org/10.1159/000527079","url":null,"abstract":"<p><strong>Background: </strong>Of the 200 million patients worldwide affected by peripheral arterial disease (PAD), 4% will inevitably require major limb amputation. Previous systematic reviews presented a conflicting body of evidence in terms of vascular endothelial growth factor (VEGF) family member effects upon PAD natural progression. Despite that, modulation of intrinsic angiogenesis mechanisms targeting the VEGF family members still confers an attractive therapeutic target. The aim of the present study was to evaluate current evidence of VEGF modulation in the context of PAD.</p><p><strong>Methods: </strong>This is a systematic literature review conducted according to the PRISMA guidelines and registered under PROSPERO database [CRD42021285988]. Independent literature search was performed up to April 1, 2022, on six databases. A total of 22 eligible studies were identified [N: 3, interventional patient studies; N: 19, animal studies]. Animal studies were appraised by the SYRCLE risk of bias tool, while human participant studies were assessed by the Newcastle Ottawa scale. Overall, quality of evidence was deemed fair for both animal and human studies. Main study outcomes were percentage change of injured vessel lumen stenosis and neointimal area formation upon VEGF modulation (inhibition or activation) in comparison with control group.</p><p><strong>Findings: </strong>Nineteen animal models and three human participant studies were included in the systematic review and assessed separately. Positive modulation of VEGF-A in animal models resulted in a median decrease of 65.58% [95% CI 45.2; 71.87] in lumen stenosis [14 studies]. Furthermore, positive modulation of VEGF-A was found to reduce neointimal area proliferation by a median decrease of 63.41% [95% CI 41.6; 79.59] [14 studies]. Median end of study duration was 28 days [range: 14-84 days]. Data were insufficient to assess these outcomes with respect to VEGF-B or VEGF-C modulation. The limited number of available human studies presented inadequate outcome assessment despite their overall fair NOS grading.</p><p><strong>Interpretation: </strong>VEGF-A-positive modulation decreases lumen stenosis and neointimal hyperplasia in PAD simulation animal models. Previously identified variability among outcomes was found to strongly stem from the variability of experimental designs. Clinical applicability and safety profile of VEGF-A in the context of PAD remain to be defined by a robust and uniformly designed body of further animal model-based experiments.</p>","PeriodicalId":17530,"journal":{"name":"Journal of Vascular Research","volume":"59 6","pages":"381-393"},"PeriodicalIF":1.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9808638/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10487219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信