{"title":"Isolation and Cultivation of Vascular Smooth Muscle Cells from the Mouse Circle of Willis.","authors":"Wei Chang, Yajuan Li, Fengzhou Liu, Kehai Zang, Peiran Zhang, Shuai Qu, Jingyu Zhao, Junhui Xue","doi":"10.1159/000532033","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Culturing cerebrovascular smooth muscle cells (CVSMCs) in vitro can provide a model for studying many cerebrovascular diseases. This study describes a convenient and efficient method to obtain mouse CVSMCs by enzyme digestion.</p><p><strong>Methods: </strong>Mouse circle of Willis was isolated, digested, and cultured with platelet-derived growth factor-BB (PDGF-BB) to promote CVSMC growth, and CVSMCs were identified by morphology, immunofluorescence analysis, and flow cytometry. The effect of PDGF-BB on vascular smooth muscle cell (VSMC) proliferation was evaluated by cell counting kit (CCK)-8 assay, morphological observations, Western blotting, and flow cytometry.</p><p><strong>Results: </strong>CVSMCs cultured in a PDGF-BB-free culture medium had a typical peak-to-valley growth pattern after approximately 14 days. Immunofluorescence staining and flow cytometry detected strong positive expression of the cell type-specific markers alpha-smooth muscle actin (α-SMA), smooth muscle myosin heavy chain 11 (SMMHC), smooth muscle protein 22 (SM22), calponin, and desmin. In the CCK-8 assay and Western blotting, cells incubated with PDGF-BB had significantly enhanced proliferation compared to those without PDGF-BB.</p><p><strong>Conclusion: </strong>We obtained highly purified VSMCs from the mouse circle of Willis using simple methods, providing experimental materials for studying the pathogenesis and treatment of neurovascular diseases in vitro. Moreover, the experimental efficiency improved with PDGF-BB, shortening the cell cultivation period.</p>","PeriodicalId":17530,"journal":{"name":"Journal of Vascular Research","volume":" ","pages":"234-244"},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10614493/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vascular Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000532033","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PERIPHERAL VASCULAR DISEASE","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Culturing cerebrovascular smooth muscle cells (CVSMCs) in vitro can provide a model for studying many cerebrovascular diseases. This study describes a convenient and efficient method to obtain mouse CVSMCs by enzyme digestion.
Methods: Mouse circle of Willis was isolated, digested, and cultured with platelet-derived growth factor-BB (PDGF-BB) to promote CVSMC growth, and CVSMCs were identified by morphology, immunofluorescence analysis, and flow cytometry. The effect of PDGF-BB on vascular smooth muscle cell (VSMC) proliferation was evaluated by cell counting kit (CCK)-8 assay, morphological observations, Western blotting, and flow cytometry.
Results: CVSMCs cultured in a PDGF-BB-free culture medium had a typical peak-to-valley growth pattern after approximately 14 days. Immunofluorescence staining and flow cytometry detected strong positive expression of the cell type-specific markers alpha-smooth muscle actin (α-SMA), smooth muscle myosin heavy chain 11 (SMMHC), smooth muscle protein 22 (SM22), calponin, and desmin. In the CCK-8 assay and Western blotting, cells incubated with PDGF-BB had significantly enhanced proliferation compared to those without PDGF-BB.
Conclusion: We obtained highly purified VSMCs from the mouse circle of Willis using simple methods, providing experimental materials for studying the pathogenesis and treatment of neurovascular diseases in vitro. Moreover, the experimental efficiency improved with PDGF-BB, shortening the cell cultivation period.
期刊介绍:
The ''Journal of Vascular Research'' publishes original articles and reviews of scientific excellence in vascular and microvascular biology, physiology and pathophysiology. The scope of the journal covers a broad spectrum of vascular and lymphatic research, including vascular structure, vascular function, haemodynamics, mechanics, cell signalling, intercellular communication, growth and differentiation. JVR''s ''Vascular Update'' series regularly presents state-of-the-art reviews on hot topics in vascular biology. Manuscript processing times are, consistent with stringent review, kept as short as possible due to electronic submission. All articles are published online first, ensuring rapid publication. The ''Journal of Vascular Research'' is the official journal of the European Society for Microcirculation. A biennial prize is awarded to the authors of the best paper published in the journal over the previous two years, thus encouraging young scientists working in the exciting field of vascular biology to publish their findings.