GliaPub Date : 2025-02-01Epub Date: 2024-10-24DOI: 10.1002/glia.24630
Minu Seong, Pedro Bak-Gordon, Zhaoqi Liu, Peter D Canoll, James L Manley
{"title":"Splicing dysregulation in glioblastoma alters the function of cell migration-related genes.","authors":"Minu Seong, Pedro Bak-Gordon, Zhaoqi Liu, Peter D Canoll, James L Manley","doi":"10.1002/glia.24630","DOIUrl":"10.1002/glia.24630","url":null,"abstract":"<p><p>Glioblastoma (GBM) has a poor prognosis with a high recurrence and low survival rate. Previous RNA-seq analyses have revealed that alternative splicing (AS) plays a role in GBM progression. Here, we present a novel AS analysis method (Semi-Q) and describe its use to identify GBM-specific AS events. We analyzed RNA-seq data from normal brain (NB), normal human astrocytes (NHAs) and GBM samples, and found that comparison between NHA and GBM was especially informative. Importantly, this analysis revealed that genes encoding cell migration-related proteins, including filamins (FLNs) and actinins (ACTNs), were among those most affected by differential AS. Functional assays revealed that dysregulated AS of FLNA, B and C transcripts produced protein isoforms that not only altered transcription of cell proliferation-related genes but also led to enhanced cell migration, resistance to cell death and/or mitochondrial respiratory function, while a dysregulated AS isoform of ACTN4 enhanced cell migration. Together, our results indicate that cell migration and actin cytoskeleton-related genes are differentially regulated by AS in GBM, supporting a role for AS in facilitating tumor growth and invasiveness.</p>","PeriodicalId":174,"journal":{"name":"Glia","volume":" ","pages":"251-270"},"PeriodicalIF":5.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
GliaPub Date : 2025-02-01Epub Date: 2024-11-06DOI: 10.1002/glia.24641
John H Stockley, Adrien M Vaquie, Zhaoyang Xu, Theresa Bartels, Gregory D Jordan, Staffan Holmqvist, Simon Gunter, Guy Lam, Daniel Yamamoto, Rini H Pek, Ian G Chambers, Andrew S Rock, Myfanwy Hill, Chao Zhao, Scott Dillon, Robin J M Franklin, Rosemary O'Connor, David M Bodine, Iqbal Hamza, David H Rowitch
{"title":"Oligodendrocyte Slc48a1 (Hrg1) encodes a functional heme transporter required for myelin integrity.","authors":"John H Stockley, Adrien M Vaquie, Zhaoyang Xu, Theresa Bartels, Gregory D Jordan, Staffan Holmqvist, Simon Gunter, Guy Lam, Daniel Yamamoto, Rini H Pek, Ian G Chambers, Andrew S Rock, Myfanwy Hill, Chao Zhao, Scott Dillon, Robin J M Franklin, Rosemary O'Connor, David M Bodine, Iqbal Hamza, David H Rowitch","doi":"10.1002/glia.24641","DOIUrl":"10.1002/glia.24641","url":null,"abstract":"<p><p>Oligodendrocytes (OLs) of the central nervous system require iron for proteolipid biosynthesis during the myelination process. Although most heme is found complexed to hemoglobin in red blood cells, surprisingly, we found that Slc48a1, encoding the heme transporter Hrg1, is expressed at higher levels in OLs than any other cell type in rodent and humans. We confirmed in situ that Hrg1 is expressed in OLs but not their precursors (OPCs) and found that Hrg1 proteins in CNS white matter co-localized within myelin sheaths. In older Hrg1 null mutant mice we observed reduced expression of myelin associated glycoprotein (Mag) and ultrastructural myelin defects reminiscent of Mag-null animals, suggesting myelin adhesion deficiency. Further, we confirmed reduced myelin iron levels in Hrg1 null animals in vivo, and show that OLs in vitro can directly import both the fluorescent heme analogue ZnMP and heme itself, which rescued iron deficiency induced inhibition of OL differentiation in a heme-oxidase-dependent manner. Together these findings indicate OL Hrg1 encodes a functional heme transporter required for myelin integrity.</p>","PeriodicalId":174,"journal":{"name":"Glia","volume":" ","pages":"399-421"},"PeriodicalIF":5.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
GliaPub Date : 2025-02-01Epub Date: 2024-11-07DOI: 10.1002/glia.24642
Cristina Fimiani, Jorge A Pereira, Joanne Gerber, Ingrid Berg, Jonathan DeGeer, Sven Bachofner, Jonas S Fischer, Manuel Kauffmann, Ueli Suter
{"title":"The E3 ubiquitin ligase Nedd4 fosters developmental myelination in the mouse central and peripheral nervous system.","authors":"Cristina Fimiani, Jorge A Pereira, Joanne Gerber, Ingrid Berg, Jonathan DeGeer, Sven Bachofner, Jonas S Fischer, Manuel Kauffmann, Ueli Suter","doi":"10.1002/glia.24642","DOIUrl":"10.1002/glia.24642","url":null,"abstract":"<p><p>Ubiquitination is a major post-translational regulatory mechanism that tunes numerous aspects of ubiquitinated target proteins, including localization, stability, and function. During differentiation and myelination, Oligodendrocytes (OLs) in the central nervous system and Schwann cells (SCs) in the peripheral nervous system undergo major cellular changes, including the tightly controlled production of large and accurate amounts of proteins and lipids. Such processes have been implied to depend on regulatory aspects of ubiquitination, with E3 ubiquitin ligases being generally involved in the selection of specific ubiquitination substrates by ligating ubiquitin to targets and granting target selectivity. In this study, we have used multiple transgenic mouse lines to investigate the functional impact of the E3 ubiquitin ligase Nedd4 in the OL- and SC-lineages. Our findings in the developing spinal cord indicate that Nedd4 is required for the correct accumulation of differentiated OLs and ensures proper myelination, supporting and further expanding previously suggested conceptual models. In sciatic nerves, we found that Nedd4 is required for timely radial sorting of axons by SCs as a pre-requirement for correct onset of myelination. Moreover, Nedd4 ensures correct myelin thickness in both SCs and spinal cord OLs.</p>","PeriodicalId":174,"journal":{"name":"Glia","volume":" ","pages":"422-444"},"PeriodicalIF":5.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
GliaPub Date : 2025-02-01Epub Date: 2024-11-04DOI: 10.1002/glia.24636
Hiroki Yamao, Ko Matsui
{"title":"Astrocytic determinant of the fate of long-term memory.","authors":"Hiroki Yamao, Ko Matsui","doi":"10.1002/glia.24636","DOIUrl":"10.1002/glia.24636","url":null,"abstract":"<p><p>While some vivid memories are unyielding and unforgettable, others fade with time. Astrocytes are recognized for their role in modulating the brain's environment and have recently been considered integral to the brain's information processing and memory formation. This suggests their potential roles in emotional perception and memory formation. In this study, we delve into the impact of amygdala astrocytes on fear behaviors and memory, employing astrocyte-specific optogenetic manipulations in mice. Our findings reveal that astrocytic photoactivation with channelrhodopsin-2 (ChR2) provokes aversive behavioral responses, while archaerhodopsin-T (ArchT) photoactivation diminishes fear perception. ChR2 photoactivation amplifies fear perception and fear memory encoding but obstructs its consolidation. On the other hand, ArchT photoactivation inhibits memory formation during intense aversive stimuli, possibly due to weakened fear perception. However, it prevents the decay of remote fear memory over three weeks. Crucially, these memory effects were observed when optogenetic manipulations coincided with the aversive experience, indicating a deterministic role of astrocytic states at the exact moment of fear experiences in shaping long-term memory. This research underscores the significant and multifaceted role of astrocytes in emotional perception, fear memory formation, and modulation, suggesting a sophisticated astrocyte-neuron communication mechanism underlying basic emotional state transitions of information processing in the brain.</p>","PeriodicalId":174,"journal":{"name":"Glia","volume":" ","pages":"309-329"},"PeriodicalIF":5.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142566912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
GliaPub Date : 2025-02-01Epub Date: 2024-11-04DOI: 10.1002/glia.24632
Ryan M Brown, Helen H Le, Isaac W Babcock, Tajie H Harris, Alban Gaultier
{"title":"Functional analysis of antigen presentation by enteric glial cells during intestinal inflammation.","authors":"Ryan M Brown, Helen H Le, Isaac W Babcock, Tajie H Harris, Alban Gaultier","doi":"10.1002/glia.24632","DOIUrl":"10.1002/glia.24632","url":null,"abstract":"<p><p>The Enteric Nervous System is composed of a vastly interconnected network of neurons and glial cells that coordinate to regulate homeostatic gut function including intestinal motility, nutrient sensing, and mucosal barrier immunity. Enteric Glial Cells (EGCs) are a heterogeneous cell population located throughout the gastrointestinal tract and have well described roles in regulating intestinal immune responses. Enteric Glial Cells have been suggested to act as nonconventional antigen presenting cells via the Major Histocompatibility Complex II (MHC II), though this has not been confirmed functionally. Here, we investigate the capability of EGCs to present antigen on MHC I and MHC II using in vitro antigen presentation assays performed with primary murine EGC cultures. We found that EGCs are capable of functional antigen presentation on MHC I, including antigen cross-presentation, but are not capable of functional antigen presentation on MHC II. We also determined EGC cell surface MHC I and MHC II expression levels by flow cytometry during intestinal inflammation during Dextran Sodium Sulfate-induced colitis or acute Toxoplasma gondii infection. We found that EGCs upregulate MHC I during acute T. gondii infection and induce low-level MHC II expression. These findings suggest that EGCs may be important in the regulation of CD8<sup>+</sup> T cell responses via MHC I mediated antigen (cross) presentation but may not be relevant for MHC II-mediated antigen presentation.</p>","PeriodicalId":174,"journal":{"name":"Glia","volume":" ","pages":"291-308"},"PeriodicalIF":5.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142566873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Aquaporin-4 activation facilitates glymphatic system function and hematoma clearance post-intracerebral hemorrhage.","authors":"Wenchao Chen, Chuntian Liang, Shasha Peng, Shuangjin Bao, Fang Xue, Xia Lian, Yinghong Liu, Gaiqing Wang","doi":"10.1002/glia.24639","DOIUrl":"10.1002/glia.24639","url":null,"abstract":"<p><p>Efficient clearance of hematomas is crucial for improving clinical outcomes in patients with intracerebral hemorrhage (ICH). The glymphatic system, facilitated by aquaporin-4 (AQP4), plays a crucial role in cerebrospinal fluid (CSF) entry and metabolic waste clearance. This study examined the role of the glymphatic system in ICH pathology, with a focus on AQP4. Collagenase-induced ICH models were established, with AQP4 expression regulated through mifepristone as an agonist, TGN-020 as an inhibitor, and Aqp4 gene knockout. Fluorescence tracing and multimodal magnetic resonance imaging (MRI) were employed to observe glymphatic system functionality, hematoma, and edema volumes. Neurological deficit scoring was performed using the modified Garcia Scale. AQP4 expression was quantified using RT-qPCR and Western blotting, and cellular localization was explored using immunofluorescence. The brain tissue sections were examined for neuronal morphology, degenerative changes, and iron deposition. Three days post-ICH, the AQP4 agonist group showed increased AQP4 protein expression and perivascular polarization, decreased hemoglobin levels, and reduced iron deposition. Conversely, the inhibition group exhibited contrasting trends. AQP4 activation improved glymphatic system function, leading to a wider distribution, improved neurological function, and reduced hematoma. Pharmacological inhibition and genetic knockout of AQP4 have opposing effects. The glymphatic system, facilitated by AQP4, plays a crucial role in hematoma clearance following cerebral hemorrhage. Upregulation of AQP4 improves glymphatic system function, facilitates hematoma clearance, and promotes brain tissue recovery.</p>","PeriodicalId":174,"journal":{"name":"Glia","volume":" ","pages":"368-380"},"PeriodicalIF":5.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
GliaPub Date : 2025-02-01Epub Date: 2024-11-04DOI: 10.1002/glia.24640
Raquel Vale-Silva, Joana de Paes de Faria, Ana Isabel Seixas, Cord Brakebusch, Robin J M Franklin, João B Relvas
{"title":"RhoA regulates oligodendrocyte differentiation and myelination by orchestrating cortical and membrane tension.","authors":"Raquel Vale-Silva, Joana de Paes de Faria, Ana Isabel Seixas, Cord Brakebusch, Robin J M Franklin, João B Relvas","doi":"10.1002/glia.24640","DOIUrl":"10.1002/glia.24640","url":null,"abstract":"<p><p>Timely differentiation and myelin formation by oligodendrocytes are essential for the physiological functioning of the central nervous system (CNS). While the Rho GTPase RhoA has been hinted as a negative regulator of myelin sheath formation, the precise in vivo mechanisms have remained elusive. Here we show that RhoA controls the timing and progression of myelination by oligodendrocytes through a fine-tuned balance between cortical tension, membrane tension and cell shape. Using a conditional mouse model, we observe that Rhoa ablation results in the acceleration of myelination driven by hastened differentiation and facilitated through membrane expansion induced by changes in MLCII activity and in F-actin redistribution and turnover within the cell. These findings reveal RhoA as a central molecular integrator of alterations in actin cytoskeleton, actomyosin contractility and membrane tension underlying precise morphogenesis of oligodendrocytes and normal myelination of the CNS.</p>","PeriodicalId":174,"journal":{"name":"Glia","volume":" ","pages":"381-398"},"PeriodicalIF":5.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142566929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
GliaPub Date : 2025-02-01Epub Date: 2024-11-03DOI: 10.1002/glia.24631
Mario Amatruda, Damien Marechal, Mar Gacias, Maureen Wentling, Sarah Turpin-Nolan, Johannes Morstein, Mohammed Moniruzzaman, Jens C Brüning, Norman J Haughey, Dirk H Trauner, Patrizia Casaccia
{"title":"Neuroprotective effect of neuron-specific deletion of the C16 ceramide synthetic enzymes in an animal model of multiple sclerosis.","authors":"Mario Amatruda, Damien Marechal, Mar Gacias, Maureen Wentling, Sarah Turpin-Nolan, Johannes Morstein, Mohammed Moniruzzaman, Jens C Brüning, Norman J Haughey, Dirk H Trauner, Patrizia Casaccia","doi":"10.1002/glia.24631","DOIUrl":"10.1002/glia.24631","url":null,"abstract":"<p><p>Ceramide C16 is a sphingolipid detected at high levels in several neurodegenerative disorders, including multiple sclerosis (MS). It can be generated de novo or from the hydrolysis of other sphingolipids, such as sphingomyelin or through the recycling of sphingosine, in what is known as the salvage pathway. While the myelin damage occurring in MS suggests the importance of the hydrolytic and salvage pathways, the growing interest on the importance of diet in demyelinating disorders, prompted us to investigate the involvement of de novo ceramide C16 synthesis on disease severity. A diet rich in saturated fats such as palmitic acid, as found in many highly processed foods, provides substrates for the ceramide C16 synthetic enzymes ceramide synthase 6 (CERS6) and 5 (CERS5), which are expressed in the central nervous system. Using the experimental autoimmune encephalomyelitis (EAE) model of inflammatory demyelination, we show here that mice with CamK2a+ neuronal specific deletion of both CerS6 and CerS5 show a milder course of EAE than wild type mice, even when fed a diet enriched in palmitic acid. At a cellular level, neurons lacking both CerS6 and CerS5 are protected from the mitochondrial dysfunction arising from exposure to oxidative stress and palmitic acid in the medium. These data underscore the importance of a healthy diet avoiding processed foods for demyelinating disorders and identifies endogenous neuronal synthesis of ceramide C16 as an important determinant of disease severity.</p>","PeriodicalId":174,"journal":{"name":"Glia","volume":" ","pages":"271-290"},"PeriodicalIF":5.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142566874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
GliaPub Date : 2025-02-01Epub Date: 2024-11-21DOI: 10.1002/glia.24650
Abigayle S Duffy, Ukpong B Eyo
{"title":"Microglia and Astrocytes in Postnatal Neural Circuit Formation.","authors":"Abigayle S Duffy, Ukpong B Eyo","doi":"10.1002/glia.24650","DOIUrl":"10.1002/glia.24650","url":null,"abstract":"<p><p>Over the past two decades, microglia and astrocytes have emerged as critical mediators of neural circuit formation. Particularly during the postnatal period, both glial subtypes play essential roles in orchestrating nervous system development through communication with neurons. These functions include regulating synapse elimination, modulating neuronal density and activity, mediating synaptogenesis, facilitating axon guidance and organization, and actively promoting neuronal survival. Despite the vital roles of both microglia and astrocytes in ensuring homeostatic brain development, the extent to which the postnatal functions of these cells are regulated by sex and the manner in which these glial cells communicate with one another to coordinate nervous system development remain less well understood. Here, we review the critical functions of both microglia and astrocytes independently and synergistically in mediating neural circuit formation, focusing our exploration on the postnatal period from birth to early adulthood.</p>","PeriodicalId":174,"journal":{"name":"Glia","volume":" ","pages":"232-250"},"PeriodicalIF":5.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142680029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
GliaPub Date : 2025-02-01Epub Date: 2024-11-04DOI: 10.1002/glia.24637
Noelia Rodriguez-Iglesias, Iñaki Paris, Jorge Valero, Lorena Cañas-Zabala, Alejandro Carretero, Klas Hatje, Jitao David Zhang, Christoph Patsch, Markus Britschgi, Simon Gutbier, Amanda Sierra
{"title":"A bottom-up approach identifies the antipsychotic and antineoplastic trifluoperazine and the ribose derivative deoxytubercidin as novel microglial phagocytosis inhibitors.","authors":"Noelia Rodriguez-Iglesias, Iñaki Paris, Jorge Valero, Lorena Cañas-Zabala, Alejandro Carretero, Klas Hatje, Jitao David Zhang, Christoph Patsch, Markus Britschgi, Simon Gutbier, Amanda Sierra","doi":"10.1002/glia.24637","DOIUrl":"10.1002/glia.24637","url":null,"abstract":"<p><p>Phagocytosis is an indispensable function of microglia, the brain professional phagocytes. Microglia is particularly efficient phagocytosing cells that undergo programmed cell death (apoptosis) in physiological conditions. However, mounting evidence suggests microglial phagocytosis dysfunction in multiple brain disorders. These observations prompted us to search for phagocytosis modulators (enhancers or inhibitors) with therapeutic potential. We used a bottom-up strategy that consisted on the identification of phagocytosis modulators using phenotypic high throughput screenings (HTSs) in cell culture and validation in organotypic cultures and in vivo. We performed two complementary HTS campagnes: at Achucarro, we used primary cultures of mouse microglia and compounds of the Prestwick Chemical Library; at Roche, we used human iPSC derived macrophage-like cells and a proprietary chemo-genomic library with 2200 compounds with known mechanism-of-action. Next, we validated the more robust compounds using hippocampal organotypic cultures and identified two phagocytosis inhibitors: trifluoperazine, a dopaminergic and adrenergic antagonist used as an antipsychotic and antineoplastic; and deoxytubercidin, a ribose derivative. Finally, we tested whether these compounds were able to modulate phagocytosis of apoptotic newborn cells in the adult hippocampal neurogenic niche in vivo by administering them into the mouse hippocampus using osmotic minipumps. We confirmed that both trifluoperazine and deoxytubercidin have anti-phagocytic activity in vivo, and validated our bottom-up strategy to identify novel phagocytosis modulators. These results show that chemical libraries with annotated mechanism of action are an starting point for the pharmacological modulation of microglia in drug discovery projects aiming at the therapeutic manipulation of phagocytosis in brain diseases.</p>","PeriodicalId":174,"journal":{"name":"Glia","volume":" ","pages":"330-351"},"PeriodicalIF":5.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142566905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}