Glia最新文献

筛选
英文 中文
The role of microglial TREM2 in development: A path toward neurodegeneration? 小胶质细胞 TREM2 在发育中的作用:神经变性之路?
IF 5.4 2区 医学
Glia Pub Date : 2024-06-05 DOI: 10.1002/glia.24574
Michela Matteoli
{"title":"The role of microglial TREM2 in development: A path toward neurodegeneration?","authors":"Michela Matteoli","doi":"10.1002/glia.24574","DOIUrl":"10.1002/glia.24574","url":null,"abstract":"<p>The nervous and the immune systems undergo a continuous cross talk, starting from early development and continuing throughout adulthood and aging. Defects in this cross talk contribute to neurodevelopmental and neurodegenerative diseases. Microglia are the resident immune cells in the brain that are primarily involved in this bidirectional communication. Among the microglial genes, <i>trem2</i> is a key player, controlling the functional state of microglia and being at the forefront of many processes that require interaction between microglia and other brain components, such as neurons and oligodendrocytes. The present review focuses on the early developmental window, describing the early brain processes in which TREM2 is primarily involved, including the modulation of synapse formation and elimination, the control of neuronal bioenergetic states as well as the contribution to myelination processes and neuronal circuit formation. By causing imbalances during these early maturation phases, dysfunctional TREM2 may have a striking impact on the adult brain, making it a more sensitive target for insults occurring during adulthood and aging.</p>","PeriodicalId":174,"journal":{"name":"Glia","volume":"72 9","pages":"1544-1554"},"PeriodicalIF":5.4,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/glia.24574","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141260506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Remyelination-oriented clemastine treatment attenuates neuropathies of optic nerve and retina in glaucoma 以去髓鞘化为导向的氯马斯汀治疗可减轻青光眼视神经和视网膜的神经病变。
IF 5.4 2区 医学
Glia Pub Date : 2024-06-03 DOI: 10.1002/glia.24543
Kun Liu, Yujian Yang, Zhonghao Wu, Chunhui Sun, Yixun Su, Nanxin Huang, Haoqian Wu, Chenju Yi, Jian Ye, Lan Xiao, Jianqin Niu
{"title":"Remyelination-oriented clemastine treatment attenuates neuropathies of optic nerve and retina in glaucoma","authors":"Kun Liu,&nbsp;Yujian Yang,&nbsp;Zhonghao Wu,&nbsp;Chunhui Sun,&nbsp;Yixun Su,&nbsp;Nanxin Huang,&nbsp;Haoqian Wu,&nbsp;Chenju Yi,&nbsp;Jian Ye,&nbsp;Lan Xiao,&nbsp;Jianqin Niu","doi":"10.1002/glia.24543","DOIUrl":"10.1002/glia.24543","url":null,"abstract":"<p>As one of the top causes of blindness worldwide, glaucoma leads to diverse optic neuropathies such as degeneration of retinal ganglion cells (RGCs). It is widely accepted that the level of intraocular pressure (IOP) is a major risk factor in human glaucoma, and reduction of IOP level is the principally most well-known method to prevent cell death of RGCs. However, clinical studies show that lowering IOP fails to prevent RGC degeneration in the progression of glaucoma. Thus, a comprehensive understanding of glaucoma pathological process is required for developing new therapeutic strategies. In this study, we provide functional and histological evidence showing that optic nerve defects occurred before retina damage in an ocular hypertension glaucoma mouse model, in which oligodendroglial lineage cells were responsible for the subsequent neuropathology. By treatment with clemastine, an Food and Drug Administration (FDA)-approved first-generation antihistamine medicine, we demonstrate that the optic nerve and retina damages were attenuated via promoting oligodendrocyte precursor cell (OPC) differentiation and enhancing remyelination. Taken together, our results reveal the timeline of the optic neuropathies in glaucoma and highlight the potential role of oligodendroglial lineage cells playing in its treatment. Clemastine may be used in future clinical applications for demyelination-associated glaucoma.</p>","PeriodicalId":174,"journal":{"name":"Glia","volume":"72 9","pages":"1555-1571"},"PeriodicalIF":5.4,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/glia.24543","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141198834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mature astrocytes as source for astrocyte repopulation after deletion in the medial prefrontal cortex: Implications for depression 内侧前额叶皮层中的成熟星形胶质细胞是删除后星形胶质细胞再填充的来源:对抑郁症的启示
IF 5.4 2区 医学
Glia Pub Date : 2024-05-27 DOI: 10.1002/glia.24573
Yi-Wen Fu, Shi-Yang Jin, Jing-Ting Li, Xiao-Wen Li, Tian-Ming Gao, Jian-Ming Yang
{"title":"Mature astrocytes as source for astrocyte repopulation after deletion in the medial prefrontal cortex: Implications for depression","authors":"Yi-Wen Fu,&nbsp;Shi-Yang Jin,&nbsp;Jing-Ting Li,&nbsp;Xiao-Wen Li,&nbsp;Tian-Ming Gao,&nbsp;Jian-Ming Yang","doi":"10.1002/glia.24573","DOIUrl":"10.1002/glia.24573","url":null,"abstract":"<p>The adult brain retains a high repopulation capacity of astrocytes after deletion, and both mature astrocytes in the neocortex and neural stem cells in neurogenic regions possess the potential to generate astrocytes. However, the origin and the repopulation dynamics of the repopulating astrocytes after deletion remain largely unclear. The number of astrocytes is reduced in the medial prefrontal cortex (mPFC) of patients with depression, and selective elimination of mPFC astrocytes is sufficient to induce depression-like behaviors in rodents. However, whether astrocyte repopulation capacity is impaired in depression is unknown. In this study, we used different transgenic mouse lines to genetically label different cell types and demonstrated that in the mPFC of normal adult mice of both sexes, mature astrocytes were a major source of the repopulating astrocytes after acute deletion induced by an astrocyte-specific toxin, L-alpha-aminoadipic acid (L-AAA), and astrocyte regeneration was accomplished within two weeks accompanied by reversal of depression-like behaviors. Furthermore, re-ablation of mPFC astrocytes post repopulation led to reappearance of depression-like behaviors. In adult male mice subjected to 14-day chronic restraint stress, a well-validated mouse model of depression, the number of mPFC astrocytes was reduced; however, the ability of mPFC astrocytes to repopulate after L-AAA-induced deletion was largely unaltered. Our study highlights a potentially beneficial role for repopulating astrocytes in depression and provides novel therapeutic insights into enhancing local mature astrocyte generation in depression.</p>","PeriodicalId":174,"journal":{"name":"Glia","volume":"72 9","pages":"1646-1662"},"PeriodicalIF":5.4,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141154425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Antagonistic actions of PAK1 and NF2/Merlin drive myelin membrane expansion in oligodendrocytes PAK1和NF2/Merlin的拮抗作用驱动少突胶质细胞的髓鞘膜扩张
IF 5.4 2区 医学
Glia Pub Date : 2024-05-25 DOI: 10.1002/glia.24570
Lucas Baudouin, Noémie Adès, Kadia Kanté, Corinne Bachelin, Hatem Hmidan, Cyrille Deboux, Radmila Panic, Rémy Ben Messaoud, Yoan Velut, Soumia Hamada, Cédric Pionneau, Kévin Duarte, Sandrine Poëa-Guyon, Jean-Vianney Barnier, Brahim Nait Oumesmar, Lamia Bouslama-Oueghlani
{"title":"Antagonistic actions of PAK1 and NF2/Merlin drive myelin membrane expansion in oligodendrocytes","authors":"Lucas Baudouin,&nbsp;Noémie Adès,&nbsp;Kadia Kanté,&nbsp;Corinne Bachelin,&nbsp;Hatem Hmidan,&nbsp;Cyrille Deboux,&nbsp;Radmila Panic,&nbsp;Rémy Ben Messaoud,&nbsp;Yoan Velut,&nbsp;Soumia Hamada,&nbsp;Cédric Pionneau,&nbsp;Kévin Duarte,&nbsp;Sandrine Poëa-Guyon,&nbsp;Jean-Vianney Barnier,&nbsp;Brahim Nait Oumesmar,&nbsp;Lamia Bouslama-Oueghlani","doi":"10.1002/glia.24570","DOIUrl":"10.1002/glia.24570","url":null,"abstract":"<p>In the central nervous system, the formation of myelin by oligodendrocytes (OLs) relies on the switch from the polymerization of the actin cytoskeleton to its depolymerization. The molecular mechanisms that trigger this switch have yet to be elucidated. Here, we identified P21-activated kinase 1 (PAK1) as a major regulator of actin depolymerization in OLs. Our results demonstrate that PAK1 accumulates in OLs in a kinase-inhibited form, triggering actin disassembly and, consequently, myelin membrane expansion. Remarkably, proteomic analysis of PAK1 binding partners enabled the identification of NF2/Merlin as its endogenous inhibitor. Our findings indicate that <i>Nf2</i> knockdown in OLs results in PAK1 activation, actin polymerization, and a reduction in OL myelin membrane expansion. This effect is rescued by treatment with a PAK1 inhibitor. We also provide evidence that the specific <i>Pak1</i> loss-of-function in oligodendroglia stimulates the thickening of myelin sheaths <i>in vivo</i>. Overall, our data indicate that the antagonistic actions of PAK1 and NF2/Merlin on the actin cytoskeleton of the OLs are critical for proper myelin formation. These findings have broad mechanistic and therapeutic implications in demyelinating diseases and neurodevelopmental disorders.</p>","PeriodicalId":174,"journal":{"name":"Glia","volume":"72 8","pages":"1518-1540"},"PeriodicalIF":5.4,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/glia.24570","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141092427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transcriptional profiling of retinal astrocytes identifies a specific marker and points to functional specialization 视网膜星形胶质细胞的转录谱分析确定了一种特异性标记并指出了功能特化。
IF 5.4 2区 医学
Glia Pub Date : 2024-05-24 DOI: 10.1002/glia.24571
Paul F. Cullen, William J. Gammerdinger, Shannan J. Ho Sui, Arpan Guha Mazumder, Daniel Sun
{"title":"Transcriptional profiling of retinal astrocytes identifies a specific marker and points to functional specialization","authors":"Paul F. Cullen,&nbsp;William J. Gammerdinger,&nbsp;Shannan J. Ho Sui,&nbsp;Arpan Guha Mazumder,&nbsp;Daniel Sun","doi":"10.1002/glia.24571","DOIUrl":"10.1002/glia.24571","url":null,"abstract":"<p>Astrocyte heterogeneity is an increasingly prominent research topic, and studies in the brain have demonstrated substantial variation in astrocyte form and function, both between and within regions. In contrast, retinal astrocytes are not well understood and remain incompletely characterized. Along with optic nerve astrocytes, they are responsible for supporting retinal ganglion cell axons and an improved understanding of their role is required. We have used a combination of microdissection and Ribotag immunoprecipitation to isolate ribosome-associated mRNA from retinal astrocytes and investigate their transcriptome, which we also compared to astrocyte populations in the optic nerve. Astrocytes from these regions are transcriptionally distinct, and we identified retina-specific astrocyte genes and pathways. Moreover, although they share much of the “classical” gene expression patterns of astrocytes, we uncovered unexpected variation, including in genes related to core astrocyte functions. We additionally identified the transcription factor Pax8 as a highly specific marker of retinal astrocytes and demonstrated that these astrocytes populate not only the retinal surface, but also the prelaminar region at the optic nerve head. These findings are likely to contribute to a revised understanding of the role of astrocytes in the retina.</p>","PeriodicalId":174,"journal":{"name":"Glia","volume":"72 9","pages":"1604-1628"},"PeriodicalIF":5.4,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141086267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inhibition of phosphodiesterase 4 attenuates aquaporin 4 expression and astrocyte swelling following cerebral ischemia/reperfusion injury 抑制磷酸二酯酶4可减轻脑缺血再灌注损伤后的水通道蛋白4表达和星形胶质细胞肿胀。
IF 5.4 2区 医学
Glia Pub Date : 2024-05-24 DOI: 10.1002/glia.24572
Kechun Chen, Bingtian Xu, Shuqin Qiu, Lu Long, Qian Zhao, Jiangping Xu, Haitao Wang
{"title":"Inhibition of phosphodiesterase 4 attenuates aquaporin 4 expression and astrocyte swelling following cerebral ischemia/reperfusion injury","authors":"Kechun Chen,&nbsp;Bingtian Xu,&nbsp;Shuqin Qiu,&nbsp;Lu Long,&nbsp;Qian Zhao,&nbsp;Jiangping Xu,&nbsp;Haitao Wang","doi":"10.1002/glia.24572","DOIUrl":"10.1002/glia.24572","url":null,"abstract":"<p>We have previously shown that phosphodiesterase 4 (PDE4) inhibition protects against neuronal injury in rats following middle cerebral artery occlusion/reperfusion (MCAO/R). However, the effects of PDE4 on brain edema and astrocyte swelling are unknown. In this study, we showed that inhibition of PDE4 by Roflumilast (Roflu) reduced brain edema and brain water content in rats subjected to MCAO/R. Roflu decreased the expression of aquaporin 4 (AQP4), while the levels of phosphorylated protein kinase B (Akt) and forkhead box O3a (FoxO3a) were increased. In addition, Roflu reduced cell volume and the expression of AQP4 in primary astrocytes undergoing oxygen and glucose deprivation/reoxygenation (OGD/R). Consistently, PDE4B knockdown showed similar effects as PDE4 inhibition; and PDE4B overexpression rescued the inhibitory role of PDE4B knockdown on AQP4 expression. We then found that the effects of Roflu on the expression of AQP4 and cell volume were blocked by the Akt inhibitor MK2206. Since neuroinflammation and astrocyte activation are the common events that are observed in stroke, we treated primary astrocytes with interleukin-1β (IL-1β). Astrocytes treated with IL-1β showed decreased AQP4 and phosphorylated Akt and FoxO3a. Roflu significantly reduced AQP4 expression, which was accompanied by increased phosphorylation of Akt and FoxO3a. Furthermore, overexpression of FoxO3a partly reversed the effect of Roflu on AQP4 expression. Our findings suggest that PDE4 inhibition limits ischemia-induced brain edema and astrocyte swelling via the Akt/FoxO3a/AQP4 pathway. PDE4 is a promising target for the intervention of brain edema after cerebral ischemia.</p>","PeriodicalId":174,"journal":{"name":"Glia","volume":"72 9","pages":"1629-1645"},"PeriodicalIF":5.4,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141086266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Repopulated microglia after pharmacological depletion decrease dendritic spine density in adult mouse brain 药物消耗后重新增殖的小胶质细胞会降低成年小鼠大脑树突棘的密度。
IF 5.4 2区 医学
Glia Pub Date : 2024-05-23 DOI: 10.1002/glia.24541
Jonathan Wickel, Ha-Yeun Chung, Mihai Ceanga, Nikolai von Stackelberg, Nina Hahn, Özge Candemir, Carolin Baade-Büttner, Nils Mein, Paula Tomasini, Dan M. Woldeyesus, Nico Andreas, Peter Baumgarten, Philipp Koch, Marco Groth, Zhao-Qi Wang, Christian Geis
{"title":"Repopulated microglia after pharmacological depletion decrease dendritic spine density in adult mouse brain","authors":"Jonathan Wickel,&nbsp;Ha-Yeun Chung,&nbsp;Mihai Ceanga,&nbsp;Nikolai von Stackelberg,&nbsp;Nina Hahn,&nbsp;Özge Candemir,&nbsp;Carolin Baade-Büttner,&nbsp;Nils Mein,&nbsp;Paula Tomasini,&nbsp;Dan M. Woldeyesus,&nbsp;Nico Andreas,&nbsp;Peter Baumgarten,&nbsp;Philipp Koch,&nbsp;Marco Groth,&nbsp;Zhao-Qi Wang,&nbsp;Christian Geis","doi":"10.1002/glia.24541","DOIUrl":"10.1002/glia.24541","url":null,"abstract":"<p>Microglia are innate immune cells in the brain and show exceptional heterogeneity. They are key players in brain physiological development regulating synaptic plasticity and shaping neuronal networks. In pathological disease states, microglia-induced synaptic pruning mediates synaptic loss and targeting microglia was proposed as a promising therapeutic strategy. However, the effect of microglia depletion and subsequent repopulation on dendritic spine density and neuronal function in the adult brain is largely unknown. In this study, we investigated whether pharmacological microglia depletion affects dendritic spine density after long-term permanent microglia depletion and after short-term microglia depletion with subsequent repopulation. Long-term microglia depletion using colony-stimulating-factor-1 receptor (CSF1-R) inhibitor PLX5622 resulted in increased overall spine density, especially of mushroom spines, and increased excitatory postsynaptic current amplitudes. Short-term PLX5622 treatment with subsequent repopulation of microglia had an opposite effect resulting in activated microglia with increased synaptic phagocytosis and consequently decreased spine density and reduced excitatory neurotransmission, while Barnes maze and elevated plus maze testing was unaffected. Moreover, RNA sequencing data of isolated repopulated microglia showed an activated and proinflammatory phenotype. Long-term microglia depletion might be a promising therapeutic strategy in neurological diseases with pathological microglial activation, synaptic pruning, and synapse loss. However, repopulation after depletion induces activated microglia and results in a decrease of dendritic spines possibly limiting the therapeutic application of microglia depletion. Instead, persistent modulation of pathological microglia activity might be beneficial in controlling synaptic damage.</p>","PeriodicalId":174,"journal":{"name":"Glia","volume":"72 8","pages":"1484-1500"},"PeriodicalIF":5.4,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/glia.24541","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141079499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IL-10 and Cdc42 modulate astrocyte-mediated microglia activation in methamphetamine-induced neuroinflammation IL-10和Cdc42在甲基苯丙胺诱导的神经炎症中调节星形胶质细胞介导的小胶质细胞活化
IF 5.4 2区 医学
Glia Pub Date : 2024-05-23 DOI: 10.1002/glia.24542
Ana Isabel Silva, Renato Socodato, Carolina Pinto, Ana Filipa Terceiro, Teresa Canedo, João Bettencourt Relvas, Margarida Saraiva, Teresa Summavielle
{"title":"IL-10 and Cdc42 modulate astrocyte-mediated microglia activation in methamphetamine-induced neuroinflammation","authors":"Ana Isabel Silva,&nbsp;Renato Socodato,&nbsp;Carolina Pinto,&nbsp;Ana Filipa Terceiro,&nbsp;Teresa Canedo,&nbsp;João Bettencourt Relvas,&nbsp;Margarida Saraiva,&nbsp;Teresa Summavielle","doi":"10.1002/glia.24542","DOIUrl":"10.1002/glia.24542","url":null,"abstract":"<p>Methamphetamine (Meth) use is known to induce complex neuroinflammatory responses, particularly involving astrocytes and microglia. Building upon our previous research, which demonstrated that Meth stimulates astrocytes to release tumor necrosis factor (TNF) and glutamate, leading to microglial activation, this study investigates the role of the anti-inflammatory cytokine interleukin-10 (IL-10) in this process. Our findings reveal that the presence of recombinant IL-10 (rIL-10) counteracts Meth-induced excessive glutamate release in astrocyte cultures, which significantly reduces microglial activation. This reduction is associated with the modulation of astrocytic intracellular calcium (Ca<sup>2+</sup>) dynamics, particularly by restricting the release of Ca<sup>2+</sup> from the endoplasmic reticulum to the cytoplasm. Furthermore, we identify the small Rho GTPase Cdc42 as a crucial intermediary in the astrocyte-to-microglia communication pathway under Meth exposure. By employing a transgenic mouse model that overexpresses IL-10 (pMT-10), we also demonstrate in vivo that IL-10 prevents Meth-induced neuroinflammation. These findings not only enhance our understanding of Meth-related neuroinflammatory mechanisms, but also suggest IL-10 and Cdc42 as putative therapeutic targets for treating Meth-induced neuroinflammation.</p>","PeriodicalId":174,"journal":{"name":"Glia","volume":"72 8","pages":"1501-1517"},"PeriodicalIF":5.4,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141079496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Activation of Shh/Smo is sufficient to maintain oligodendrocyte precursor cells in an undifferentiated state and is not necessary for myelin formation and (re)myelination Shh/Smo的激活足以使少突胶质前体细胞保持未分化状态,而不是髓鞘形成和(再)髓鞘化所必需的。
IF 5.4 2区 医学
Glia Pub Date : 2024-05-21 DOI: 10.1002/glia.24540
Sonia Nocera, Miguel A. Marchena, Beatriz Fernández-Gómez, Paula Gómez-Martín, Estefanía Sánchez-Jiménez, Alba Macías-Castellano, Yolanda Laó, Christian Cordano, Óscar Gómez-Torres, Rafael Luján, Fernando de Castro
{"title":"Activation of Shh/Smo is sufficient to maintain oligodendrocyte precursor cells in an undifferentiated state and is not necessary for myelin formation and (re)myelination","authors":"Sonia Nocera,&nbsp;Miguel A. Marchena,&nbsp;Beatriz Fernández-Gómez,&nbsp;Paula Gómez-Martín,&nbsp;Estefanía Sánchez-Jiménez,&nbsp;Alba Macías-Castellano,&nbsp;Yolanda Laó,&nbsp;Christian Cordano,&nbsp;Óscar Gómez-Torres,&nbsp;Rafael Luján,&nbsp;Fernando de Castro","doi":"10.1002/glia.24540","DOIUrl":"10.1002/glia.24540","url":null,"abstract":"<p>Myelination is the terminal step in a complex and precisely timed program that orchestrates the proliferation, migration and differentiation of oligodendroglial cells. It is thought that Sonic Hedgehog (Shh) acting on Smoothened (Smo) participates in regulating this process, but that these effects are highly context dependent. Here, we investigate oligodendroglial development and remyelination from three specific transgenic lines: NG2-Cre<sup>ERT2</sup> (control), Smo<sup>fl/fl</sup>/NG2-Cre<sup>ERT2</sup> (loss of function), and SmoM2/NG2-Cre<sup>ERT2</sup> (gain of function), as well as pharmacological manipulation that enhance or inhibit the Smo pathway (Smoothened Agonist (SAG) or cyclopamine treatment, respectively). To explore the effects of Shh/Smo on differentiation and myelination in vivo, we developed a highly quantifiable model by transplanting oligodendrocyte precursor cells (OPCs) in the retina. We find that myelination is greatly enhanced upon cyclopamine treatment and hypothesize that Shh/Smo could promote OPC proliferation to subsequently inhibit differentiation. Consistent with this hypothesis, we find that the genetic activation of Smo significantly increased numbers of OPCs and decreased oligodendrocyte differentiation when we examined the corpus callosum during development and after cuprizone demyelination and remyelination. However, upon loss of function with the conditional ablation of Smo, myelination in the same scenarios are unchanged. Taken together, our present findings suggest that the Shh pathway is sufficient to maintain OPCs in an undifferentiated state, but is not necessary for myelination and remyelination.</p>","PeriodicalId":174,"journal":{"name":"Glia","volume":"72 8","pages":"1469-1483"},"PeriodicalIF":5.4,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/glia.24540","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141069934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Image, Volume 72, Issue 7 封面图片,第 72 卷第 7 期
IF 6.2 2区 医学
Glia Pub Date : 2024-05-09 DOI: 10.1002/glia.24405
Joseph Matthew Holden, Lauren Katie Wareham, David John Calkins
{"title":"Cover Image, Volume 72, Issue 7","authors":"Joseph Matthew Holden,&nbsp;Lauren Katie Wareham,&nbsp;David John Calkins","doi":"10.1002/glia.24405","DOIUrl":"https://doi.org/10.1002/glia.24405","url":null,"abstract":"<p>Cover Illustration: Z stack image from the nerve fiber layer through the inner plexiform layer of a mouse retina. In cyan is a displaced astrocyte which was patched and filled with Lucifer yellow. Orange is tdTomato labeling in astrocytes. (See Holden, JM, et al, https://doi.org/10.1002/glia.24536)\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":174,"journal":{"name":"Glia","volume":"72 7","pages":"C1"},"PeriodicalIF":6.2,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/glia.24405","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140895233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信